Research
My research lies in the fields of Contact and Symplectic Topology. More precisely, I'm very interested in the interplay between the flexible and rigid sides of the field, the topology of the contactomorphism group, Legendrian embedding spaces, etc. I'm also curious about diffeomorphism groups and smooth embedding spaces, and how Contact/Symplectic Topology could help to understand these smooth gadgets and vice versa.
Papers and preprints
Grasper families of spheres in S^2 x D^2 and barbell diffeomorphisms of S^1 x S^2 x I. (j.w David Gay, Daniel Hartman and Danica Kosanović). 2024
A bypass in the middle. (j.w. Dahyana Farias). 2024 Submitted.
Parametric satellites and connected-sums in the space of Legendrian embeddings. (j.w. Javier Martínez-Aguinaga and Francisco Presas). 2024
Strongly overtwisted contact 3-manifolds. 2024 Submitted.
Spaces of Legendrian cables and Seifert fibered links. (j.w. Hyunki Min) 2023. Submitted.
Exotic Dehn twists on sums of two contact 3-manifolds. (j.w. Juan Muñoz-Echániz) 2022. Accepted for publication in Geometry & Topology.
The homotopy type of the contactomorphism group of tight contact 3-manifolds, Part I. ( (j.w. Javier Martínez-Aguinaga and Francisco Presas) 2021 Submitted.
A remark on the contactomorphism group of overtwisted spheres. (j.w. Fabio Gironella) C. R. Math. Acad. Sci. Paris 358 (2020), no. 2, 189–196.
The fundamental group of formal Legendrian and horizontal embedding spaces. (j.w. Javier Martínez-Aguinaga and Francisco Presas) Algebr. Geom. Topol. 20 (2020), no. 7, 3219-3312.
Loops of Legendrians in Contact 3-manifolds. (j.w. Javier Martínez-Aguinaga and Francisco Presas) In Classical and Quantum Physics. Springer Proceedings in Physics., volume 229. Springer, Cham., 2019.