2021 - 2026
16. Ramananda S.H., Sundaresan, V*. "Label-efficient Sequential model-based Weakly supervised Intracranial Hemorrhage Segmentation in Low-data Non-Contrast CT imaging." Medical Physics (Accepted in 2025, in press) [Preprint]
15. Sundaresan, V*, Zamboni G, Dineen R.A, Auer D.P., Sotiropoulos S.N, Sprigg N, Jenkinson M, and Griffanti L. "Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI." European radiology experimental 9, no. 1 (2025): 5. [Paper]
14. Narayanan, R, and Sundaresan, V*. "MedLesSynth-LD: Lesion synthesis using physics-based noise models for robust lesion segmentation in low-data medical imaging regimes." Pattern Recognition Letters 188 (2025): 155-163. [Paper]
13. Soren V.N., Prajwal, H.S., Sundaresan, V.*, Automated grading of diabetic retinopathy and Radiomics analysis on ultra-wide optical coherence tomography angiography scans. Image and Vision Computing 151, 105292 (2024). [Paper]
12. Sundaresan, V.*, Arthofer, C., et al, Automated Detection of Cerebral Microbleeds on MR images using Knowledge Distillation Framework.Frontiers in Neuroinformatics, 17, p.1204186. (2023). [Paper]
11. Dinsdale, N.K.*, Bluemke, E., Sundaresan, V. et al. Challenges for machine learning in clinical translation of big data imaging studies. Neuron (2022). [Preprint / Paper]
10. Sundaresan, V.* et al.Automated Detection of Candidate Subjects with Cerebral Microbleeds using Machine Learning. Front. Neuroinform. 15, 80 (2022). [Paper]
9. Sundaresan,V.* et al. Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images. Med Image Anal. 74, 102215 (2021). [Paper]
8. Campello, V.M.*, Gkontra, P., Izquierdo, C., Martín-Isla, C., Sojoudi, A., Full, P.M., Maier-Hein, K., Zhang, Y., He, Z., Ma, J., Parreño, M., Albiol, A., Kong, F., Shadden, S. C., Acero, J, C., Sundaresan, V. et al. Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. IEEE Trans Med Imaging 40 (12), 3543-3554 (2021). [Paper]
7. Sundaresan,V.*, Zamboni,G., Rothwell,P.M., Jenkinson,M., & Griffanti,L. Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images. Med Image Anal. 73, 102184 (2021). [Paper]
6. Bordin, V.*, Bertani, I., Mattioli, I., Sundaresan, V. et al. Integrating large-scale neuroimaging research datasets: harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets. NeuroImage 237, 118189 (2021). [Paper]
5. Melazzini, L.*, Mackay, C.E., Bordin, V., S Suri, Zsoldos, E., Filippini, N., Mahmood, A., Sundaresan, V. et al. White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance. NeuroImage Clin. 30, 102616 (2021). [Paper]
2015 - 2020
4. Gentile, G.*, Battaglini, M., Luchetti, L., Giorgio, A., Griffanti, L., Sundaresan, V. et al.BIANCA for an automatic detection of multiple sclerosis lesions using machine learning. Multiple Sclerosis Journal 25,
681 SAGE publications (2019). [Paper]
3. Sundaresan, V.* et al. Automated lesion segmentation with BIANCA: impact of population-level features, classification algorithm and locally adaptive thresholding. NeuroImage 202, 116056 (2019). [Paper]
2. Sundaresan, V.*, L Griffanti., P Kindalova., F Alfaro-Almagro, G Zamboni., Modelling the distribution of white matter hyperintensities due toageing on MRI images using Bayesian inference (2019). [Paper]
1. Griffanti, L.*, Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. NeuroImage 141, 191-205 (2016). [Paper]