Publication House from Dr. Haldar's Research Career
Publication House from Dr. Haldar's Research Career
Fluorinated Benzimidazole-linked 2D-conjugated Polymer Enabling Covalent Polysulfide Anchoring for Stable Sulfur Batteries
Haldar, S.*; Khan, A. H.; De. A.; Reichmayr, F.; Morag, A.; Yu, M.; Schneemann, A.; Kaskel, S.* (2024): Chemistry - A European Journal (Hot Paper), 30, e2023027. https://doi.org/10.1002/chem.202302779 [IF: 5.02] *Corresponding Author
Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries
Haldar, S.*; Waentig, A. L.; Ramuglia, A. R.; Bhauriyal, P; Khan, A. H.; Pastoetter, D. L.; Isaacs, M. A.; De, A.; Brunner, E.; Wang, M.; Heine, T.; Weidinger, I. M.; Feng, X.; Schneemann, A.; Kaskel, S.* (2023): ACS Energy Letters, 8, 12, 5098–5106. https://doi.org/10.1021/acsenergylett.3c01548 [IF: 23.991] *Corresponding Author
Sulfide Bridged Covalent Quinoxaline Frameworks for Lithium-Organo-Sulfide Battery
Haldar, S.*; Bhauriyal, P; Ramuglia, A. R.; Khan, A. H.; Kock, S. D.; Hazra, A.; Bon, V.; Pastoetter, D. L.; Kirchhoff, S.; Shupletsov, L.; De, A .; Isaacs, M. A. ; Feng, X .; W alter, M .; Brunner, E., Wei ding er , I . M.; Heine, T.; Schneemann, A.; Kaskel, S.* (2023): Advanced Materials (editor’s choice), 35, 2210151. https://doi.org/10.1002/adma.202210151. [IF: 32.09] *Corresponding Author
Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes
Haldar, S.*; Wang, M.; Bhauriyal, P.; Hazra, A.; Khan, A. H.; Bon, V., Isaacs, M. A.; De, A.; Shupletsov, L.; Boenke, T.; Grothe, J.; Heine, T.; Brunner, E.; Feng, X.; Dong, R.; Schneemann, A.; Kaskel, S.* (2022): Journal of the American Chemical Society, 144 (20), 9101–9112 pp. https://doi.org/10.1021/jacs.2c02346 [IF: 16.389] *Corresponding Author
Covalent-Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles
Haldar, S.*; Schneemann, A.; Kaskel, S.* (2023): Journal of the American Chemical Society (invited perspective), 145 (25), 13494–13513. https://pubs.acs.org/doi/10.1021/jacs.2c02346. [IF: 16.389] *Corresponding Author
Chemical Exfoliation as a Controlled Route to Enhance the Anodic Performance of COF in LIB
Haldar, S.*; Roy, K.; Kushwaha, R.; Ogale, S.*; Vaidhyanathan, R.* (2019): Advanced Energy Materials, 9, 1902428 pp. https://doi.org/10.1002/aenm.201902428 [IF: 29.7] *Corresponding Author
Tuning the Electronic Energy Level of Covalent Organic Framework for Crafting High-rate Na-ion Battery Anode
Haldar, S.; Kaleeswaran, D.; Rase, D.; Roy, K.; Ogale, S.; Vaidhyanathana, R.* (2020): Nanoscale Horizons (most popular 2020 article), 5, 1264-1273 pp. https://doi.org/10.1039/D0NH00187B. [IF: 11.684]
High and Reversible Lithium Ion Storage in Self‐Exfoliated Triazole‐Triformyl Phloroglucinol‐Based Covalent Organic Nanosheets
Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.*; Vaidhyanathan, R.* (2017): Advanced Energy Materials, 8, 1702170 pp. https://doi.org/10.1002/aenm.201702170 [IF: 29.7]
Incorporating Conducting Polypyrrole into a Polyimide COF for Carbon-Free Ultra-High Energy Supercapacitor
Haldar, S.; Rase, D.; Shekhar, P.; Jain, C.; Vinod, C. P.; Zhang, E.; Shupletsov, L.; Kaskel, S.*; Vaidhyanathan, R.* (2022): Advanced Energy Materials, 12, 2200754. https://doi.org/10.1002/aenm.202200754 [IF: 29.7]
Pyridine-rich Covalent Organic Frameworks as High-performance Solid State Supercapacitors
Haldar, S.; Kushwaha, R.; Maity, R.; Vaidhyanathan. R.* (2019): ACS Materials Letters, 1, 490 pp. https://doi.org/10.1021/acsmaterialslett.9b00222 [IF: 11.17]
Facile Exfoliation of Single‐Crystalline Copper Alkylphosphates to Single‐Layer Nanosheets and Enhanced Supercapacitance
Bhat, G. A.+; Haldar, S.+ (Equal first author); Verma, S.; Chakraborty, D.; Vaidhyanathan, R.*; Murugavel, R.* (2019): Angewandte Chemie International Edition, 58, 16844 pp. https://doi.org/10.1002/anie.201910157 [IF: 16.82]
Anthracene-Resorcinol Derived Covalent Organic Framework as Flexible White Light Emitter
Haldar, S.; Chakraborty, D.; Roy, B.; Banappanavar, G.; Rinku, K.; Mullangi, D.; Hazra, P.; Kabra, D.*; Vaidhyanathan, R.* (2018): Journal of the American Chemical Society, 41, 13367 pp. https://doi.org/10.1021/jacs.8b08312 [IF: 16.389]
Electron-deficient Two-dimensional Poly(arylene vinylene) Covalent Organic Frameworks: Efficient Synthesis and Host-Guest Interaction
Waentig, A. L.; Li, X.; Zhao, M.; Haldar, S.; Koko, P.; Paasch, S.; Mueller, A.; Garcia Alvarez, K. M.; Auras, F.; Brunner, E.; Schneemann, A.; Huang, J.-Q.; Kaskel, S.; Wang, M.; Feng, X. (2025). Chemical Science, 16, 4152-4158. https://doi.org/10.1039/D4SC06903J [IF: 7.6]
An Alkyne-bridged Covalent Organic Framework Featuring Interactive Pockets for Bromine Capture
De, A.; Haldar, S.; Schmidt, J.; Amirjalayer, S.; Reichmayr, F.; j Lopatik, N.; Shupletsov, L.; Brunner, E.; Weidinger, I.; Schneemann. A.* (2024): Angewandte Chemie International Edition, 63 (31), e202403658. https://doi.org/10.1002/anie.202403658 [IF: 16.823]
Tuning the Planarity of an Aromatic Thianthrene-Based Molecule on Au (111)
Au-Yeung, K. H.; Sarkar, S.; Haldar, S.; Das, P.; Kühne, T.; Ryndyk, D. A.; Bhauriyal, P.; Kaskel, S.; Heine, T.; Cuniberti, G.; Schneemann, A.; Moresco F.* (2024): Journal of Physical Chemistry C. 128 (4), 1855-1861. https://doi.org/10.1021/acs.jpcc.3c07633 [IF: 4.18]
Manipulation of Covalent Organic Framework by Side Chain Functionalization - Towards Few-Layer Nanosheets
De, A.; Haldar, S.; Michel, S.; Shupletsov, L.; Bon, V.; Lopatik, N.; Ding, L.; Eng, L. M.; Auernhammer, G., K.; Brunner, E.; Schneemann, A.* (2023): Chemistry of Materials, 35 (10), 3911–3922. https://doi.org/10.1021/acs.chemmater.3c00048 [IF: 9.81]
Hydroxide ion-conducting viologen–bakelite organic frameworks for flexible solid-state zinc–air battery applications
Rase, D.; Illathvalappil, R.; Singh, H. D.; Shekhar, P.; Leo, L. S.; Chakraborty, D.; Haldar, S.; Shelke, A.; Ajithkumar, T. G.; and Vaidhyanathan, R.* (2023): Nanoscale Horizons, 8, 224-234 pp. DOI: 10.1039/d2nh00455k [IF: 11.684]
Exceptional Capacitance Enhancement of a Non-conducting COF Through Potential-driven Chemical Modulation by Redox Electrolyte
Kushwaha, R.; Haldar, S.; Shekhar, P.; Krishnan, A.; Saha, J.; Hui, P.; Vinod, C. P.; Subramaniam, C.; Vaidhyanathan, R.* (2021): Advanced Energy Materials, 11, 202003626 pp. DOI: 10.1002/aenm.202003626 [IF: 29.7]
Multi-shelled NiO hollow microspheres as bifunctional materials for electrochromic smart window and non-enzymatic glucose sensor
Dewan, A.; Haldar, S.; Narayanan, R.* (2021): Journal of Solid State Electrochemistry, 25, 821-830 pp. DOI: 10.1007/s10008-020-04861-2 [IF: 2.5]
Cu/Cu2O Nanoparticles Supported on a Phenol-Pyridyl COF as a Heterogeneous Catalyst for the Synthesis of Unsymmetrical Diynes via Glaser-Hay Coupling
Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C. P.; Vaidhyanathan, R.* (2019): ACS Applied Materials and Interfaces, 11, 15670 pp. DOI: 10.1021/acsami.9b02860 [IF: 10.98]
Carbon Derived from Soft Pyrolysis of COF as a Support for Small-Sized RuO2 Showing Exceptionally Low-Overpotential for OER
Chakraborty, D.; Nandi, S.; Illathvalappil, R.; Mullangi, D.; Maity, R.; Singh, S. K.; Haldar, S.; Vinod, C. P.; Kurungot, S.*; Vaidhyanathan, R.* (2019): ACS Omega, 4, 13465 pp. DOI: 10.1021/acsomega.9b01777 [IF: 3.512]
An experimental and computational investigations of supramolecular anion–π/π–π/π–anion assemblies in mononuclear Zn(II) complexes with a versatile tetradentate N-donor Schiff base ligand
Roy, M.; Bauzá, A.; Frontera, A.; Banerjee, S.; Haldar, S., Saha, A.* (2015): Polyhedron, 102, 764 pp. https://doi.org/10.1016/j.poly.2015.11.005 [IF: 2.98]
Haldar, S.; Roy, K.; Nandi, S.; Vaidhyanathan, R. (2020): Self-Exfoliated Triazole-Triformyl Phloroglucinol Based Covalent Organic Nanosheets For High And Reversible Lithium-Ion Storage. (US Patent No: 10,981,925 B2, 2021), https://patentimages.storage.googleapis.com/90/d9/2d/779c94ee95b5fd/US10981925.pdf
Role: Main investigator together with Prof. Ramanathan Vaidhyanathan
Haldar, S.; R Vaidhyanathan. (2023): Method of tuning the electronic energy level of covalent organic framework for crafting high-rate Na-ion battery anode. (US Patent App. 17/914,925, 2023 US20230123529A1)
https://patentimages.storage.googleapis.com/be/1b/94/637e15ca8707ec/US20230123529A1.pdf
Role: Main investigator together with Prof. Ramanathan Vaidhyanathan
Haldar, S.; Chakraborty, D.; Roy, B.; Banappanavar, G.; Rinku, K.; Mullangi, D.; Hazra, P.; Kabra, D.; Vaidhyanathan, R. (2018): Covalent Organic Framework As Flexible White Light Emitter. (IN Patent No: 201821028796 A, 2021)
https://ipindia.gov.in/writereaddata/Portal/IPOJournal/1_4943_1/Part-1.pdf
Role: Main investigator together with Prof. Ramanathan Vaidhyanathan