Some References to My Publications

For a complete list of 225+ citations, click on this link to scholar.google.com

  1. S. M. Hasheminejad and M. Gudarzi, "Active sound radiation control of a submerged piezocomposite hollow sphere," JIMSS 1-19 (2014).
  2. A. Oveisi,M.Gudarzi,and S. M. Hasheminejad, "Dynamic response of a thick piezoelectric circular cylindrical panel:An exact solution" Shock and Vibration, Vol.2014, Article ID 592165, 8 pages http://dx.doi.org/10.1155/2014/592165
  3. J. Hu, S. Lin, X. Zhang, Y. Wang, "Radially sandwiched composite transducers composed of the radially polarized piezoelectric ceramic circular ring and metal rings," Acta Acustica Vol. 100 pp 418-426 (2014).
  4. X. Zhang, Shuyu Lin, Yong Wang, and Zhiqiang Fu, "Three-dimensional theory of longitudinal-radial coupled vibration for annular elastic cylinder," Acta Acustica Vol. 100, pp 254-258 (2014).
  5. A.V. Dmitriev, D.S. Gritsenko, V.P. Mitrofanov, "Surface vibrational modes in disk-shaped resonators," Ultrasonics Vol. 54, pp 905-913 (2014).
  6. J. A. Brown, K. Dunphy , J. R. Leadbetter, R. B. A. Adamson, and O. Beslin, "Fabrication and performance of a single-crystal lead magnesium niobate-lead titanate cylindrical hydrophone," J. Acoustical Society of America Vol. 134, pp 1031-1038 (2013).
  7. W. P. Rdzanek, W. J. Rdzanek, and K. Szemela, "The low frequency axisymmetric modal sound radiation efficiency of an elastically supported annular plate," Journal of Sound and Vibration Vol. 333, pp 144-156 (2013).
  8. S. M. Hasheminejad and A. Ghaheri, "Free vibration analysis of a finite length isotropic solid elliptic cylinder using exact three dimensional elasticity theory," Applied Mathematical Modelling Vol. 37, pp 8725-8741 (2013).
  9. H. N. Radke, "Development of a self-tuning amplifier for piezoelectric transducer evaluations," University of Rhode Island Open Access Master's Thesis Paper 80 (2013).
  10. R. Selvamani, P. Ponnusamy, "Elasto dynamic wave propagation in a transversely isotropic piezoelectric circular plate immersed in fluid," Materials Physics and Mechanics Vol. 17, pp 164-177 (2013).
  11. Y. Huang and D. Z. Liu, "Length effect on the ME coupling behavior of a simply supported finite composite cylinder," International Journal of Mechanical Sciences, Vol. 76, pp 158-165 (2013).
  12. C. X. Bi, L. Geng, and X. Z. Zhang, "Cubic spline interpolation-based time-domain equivalent source method for modeling transient acoustic radiation," Journal of Sound and Vibration Vol. 332 (22) pp 5939–5952 (2013).
  13. Y. H. Su, Y. P. Liu, D. Vasic, F. Costa, W. J. Wu, C. K. Lee, "Study of a piezoelectric transformer based DC/DC converter with a cooling system and a current-doubler rectifier," Smart Materials and Structures Vol. 22(9) (2013).
  14. H. Zeynali, B. Jazi, R. Karimi, "The theoretical simulation of axial vibrations in finite cylindrical piezoelectric cylindrical shell made of trigonal (3M) crystal," Physics Intl. Vol. 4(1) pp 13 - 22 (2013).
  15. P. Ponnusamy, "Wave propagation in a piezoelectric solid bar of circular cross-section immersed in a fluid," Intl. J. Pressure Vessels and Piping http://dx.doi.org/10.1016/j.ijpvp.2013.02.003, (2013).
  16. S. M. Hasheminejad and H. Mousavi-Akbarzadeh, "Three-dimensional non-axisymmetric transient acoustic radiation from an eccentric hollow cylinder," Wave Motion 50(4) pp 723-738 (2013).
  17. S. Lin, Z. Fu, X. Zhang, Y. Wang, J. Hu, "Radially sandwiched cylindrical piezoelectric transducer," Smart Mater. Struct. 22 (2013).
  18. Y. Zhou, W. Chen, and C. Lu, "Elastic waves in multiferroric cylinders of sectorial cross-section," Composites Part B: Engineering 43(8) pp 3001-3008 (2012).
  19. S. X. Liu, L. G. Tang, X. M. Xu, "Transient elastodynamic response of finite and infinite solid cylinders," Applied Acoustics Vol 73(8) pp 798-802 (2012).
  20. W. W. Shao, L. J. Chen, C. L. Pan, Y. B. Liu, Z. H. Feng, "Power density of piezoelectric transformers improved using a contact heat transfer structure," IEEE UFFC Vol. 59 pp 73-81 (2012).
  21. S Lin, S Wang, Z Fu, "Electro-mechanical equivalent circuit for the radial vibration of the radially poled piezoelectric ceramic long tubes with arbitrary wall thickness," Sensors and Actuators A: Physical Vol. 180 pp 87-96 (2012).
  22. D. Kim, J. O. Kim, and S. I. Jung, "Vibration characteristics of a piezoelectric open-shell transducer," J. Sound and Vibration Vol. 331 pp 2038-2054 (2012).
  23. J. Awrejcewicz, V. Storozhev and V. Puzyrev, "Controlling the dynamic behavior of piezoceramic cylinders by cross-section geometry," Acta Mechanica (2012).
  24. R. Liao, J. Tan, H. Wang, L. Li, and S. Qiang, "Dynamic performance analysis of T network impedance matching," WSEAS Trans. Circuits and Systems Vol. 11 pp 33-42 (2012).
  25. Y. Bai, S. Tuncdemir, J. Guo, K. Uchino, "Analysis of longitudinal and torsional resonance vibrations of a piezoelectrically excited bar by introducing piezoelectric loss coefficients," J. Intelligent Material Systems and Structures (2012).
  26. L. Shuyu, "Radially composite piezoelectric ceramic tubular transducer in radial vibration," IEEE UFFC Vol. 58 pp 2492-2498 (2011).
  27. L. Pardo and J. Ricote, Multifunctional polycrystalline ferroelectric materials. Springer Series in Materials Science Vol. 140. ISBN 978-90-481-2874-7. Yr. 2011.
  28. V. Puzyrev and V.Storozhev, "Wave propagation in axially polarized piezoelectric hollow cylinders of sector cross section," J. Sound and Vibration Vol. 330 pp 4508-4518 (2011).
  29. W. Q. Chen and Z. G. Bian, "Wave propagation in submerged functionally graded piezoelectric cylindrical transducers with axial polarization," Mechanics of Advanced Materials and Structures Vol. 18 pp (2011).
  30. D. Kuo, Y. C. Shiah, and J. H. Huang, "Modal analysis of a loudspeaker and its associated acoustic pressure field," J. Vibration and Acoustics Vol. 133 pp 031015-1 031015-11 (2011).
  31. R. Liao, J. Tan, and H. Wang, "Q based design method for impedance matching network considering load variation and frequency drift," Microelectronics Journal Vol. 42 pp 403-408 (2011).
  32. W. P. Rdzanek, K. Szemela, and D. Pieczonka, "Acoustic pressure radiated by a circular membrane into the quarter space," Archives of Acoustics 36(1) pp 121 - 139 (2011).
  33. J. Hu, Z. Qiu, T. C. Su, "Axisymmetric vibrations of a viscous-fluid-filled piezoelectric spherical shell and the associated radiation of sound," J. Sound and Vibration Vol. 330 pp 5982-6005 (2011).
  34. M. I. H. Yaacob, M. R. Arshad, and A. Abd. Manaf, "Modeling of circular piezoelectric micro ultrasonic transducer using CuAlNiFe on ZnO film for sonar applications," Acoustical Physics Vol. 57 pp 151-158 (2011).
  35. M. H. Korayem, S. Sadeghzadeh, A. Homayooni, "Semi-analytical motion analysis of nano-steering devices, segmented piezotube scanners," Intl. J. Mechanical Sciences Vol. 53 pp 536 - 548 (2011).
  36. M. Morgado, P. Oliveira, and C. Silvestre, “A closed-loop design methodology for underwater transducers pulse-shaping,” Intl. Conf. Mechatronics and Automation pp 2014 - 2019 (Beijing, 2011).
  37. M Moszynski and W Lis, "A SPICE equivalent circuit for modeling the performance of dual frequency echo-sounder," Hydroacoustics Vol. 14 pp 165-170 (2011).
  38. F. Marinello, Balcon, S. Carmignato, E. Savio, "Long term thermal drift study on SPM scanners," Mechatronics Vol. 21 pp 1272-1278 (2011).
  39. L. Yazdanparast, B. Abdi, A. H. Ranjbar, S. M. M. Mirtalaei, "Theoretical analysis of rotating hollow cylinder's vibrations," Energy Procedia Vol. 12, pp 1023-1031 (2011).
  40. D. Sun, S. Wang, S. Hata and A. Shimokohbe, “Axial vibration characteristics of a cylindrical, radially polarized piezoelectric transducer with different electrode patterns,” Ultrasonics Vol. 50(3) pp 403-410 (2010).
  41. O. G. McGee III and J.W. Kim, "Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks,” J. Sound and Vibration Vol. 329 pp 457 – 484 (2010).
  42. M. Brissaud, "Three-dimensional modeling of piezoelectric materials,” IEEE UFFC 57(9), pp 2051–2065 (2010).
  43. M. R. Saviz and M. Mohammadpourfard, “Dynamic analysis of a laminated cylindrical shell with piezoelectric layers under dynamic loads,” Finite Elements in Analysis and Design Vol. 46(9) pp 770-781 (2010).
  44. A.M. Abd-Alla, S.R. Mahmoud, and N.A. AL-Shehri, "Effect of the rotation on the radial Vibrations in a non-homogeneous orthotropic hollow cylinder," Open Mechanics Journal Vol 4, pp 58-64 (2010).
  45. V. Puzyrev, “Elastic waves in piezoceramic cylinders of sector cross section,” Intl. J. Solids and Structures, Vol. 47(6) pp 2115 – 2122 (2010).
  46. J. Yuan, T. Xie, W. Chen, X. Shan, and S. Jiang, “Performance of a drum transducer for scavenging vibration energy,” J. Intelligent Material Systems, Systems, and Structures Vol. 20(14) pp 1771-1777 (2010).
  47. V. Puzyrev, "Analysis of multilayered piezoelectric cylinders with non-circular cross-section," 20th Intl. Congress Acoustics (Sydney, Australia, 2010).
  48. M. I. H. Yaacob, M. R. Arshad and A. A. Manaf, “Modeling and Theoretical Characterization of Circular pMUT for Immersion Applications OCEANS 10 (Sydney, 2010).
  49. M. I. H Yaacob, M. R. Arshad, A. A. Manaf “Theoretical characterization of square piezoelectric micro ultrasonic transducer for underwater applications,” Proc. 7th Intl. Symp. Mechatronics and Applications (ISMA10), Sharjah, UAE, April 20-22, 2010.
  50. B.-S. Gao and S.-Y. Lin, "Research on the new type of cylindrical tube transducer," J. Shaanxi Normal University Vol. 38(2) pp 43-45 (2010).
  51. B.-S. Gao and S.-Y. Lin, "Thick walled piezoceramic ring radial polarization study," (in Chinese) Applied Acoustics pp 217-221 (2010). Translate using google.
  52. B. Aronov, “Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers,” J. Acoustical Soc. America Vol. 125(2) pp 803 – 818 (2009).
  53. F. Honarvar, E. Enjilela, and A. N. Sinclair, “Asymmetric and Axisymmetric Vibrations of Finite Transversely Isotropic Circular Cylinders,” Acoustical Physics, Vol. 55, No. 6, pp. 708–714 (2009).
  54. J. Yuan et al, “Performance of a Drum Transducer for Scavenging Vibration Energy,” J. Intelligent Mat. Systems and Structures Vol. 20(14) pp 1771 – 1777 (2009).
  55. G.-Q. Gu, En-Bo Wei, Chen Xu, “Effective elastic properties of piezoelectric composites with radially polarized cylinders,” Physics B Condensed Matter 404(21) 4001 – 4006 (2009).
  56. S. M. Hasheminejad and M. Rajabi, “Scattering and active acoustic control from a submerged piezoelectric-coupled orthotropic hollow cylinder,” J. Sound and Vibration Vol. 318 pp 50-73 (2008).
  57. F. J. Nieves, A. Bayón and F. Gascón,Optimization of the Ritz method to calculate axisymmetric natural vibration frequencies of cylinders,” J. Sound and Vibration Vol. 311 pp 588-596 (2008).
  58. V. M. Bogomol’nyi, "Electroelasticity relations and fracture mechanics of piezoelectric structures," App. Mech. Rev. Vol. 60 pp 21 - 36 (2007).
  59. P. Marechal et al, "Lens-focused transducer modeling using an extended KLM model," Ultrasonics 46 pp 155 - 167 (2007).
  60. S. Sherritt and B. K. Mukherjee, “Characterization of piezoelectric materials for transducers,” arXiv:0711.2657 (2007).
  61. Y. Hu, H. Xue, and H. Hu, "A piezoelectric power harvester with adjustable frequency through axial preloads," Smart Mater. Struct. 16 1961 - 1966 (2007).
  62. W. P. Rdzanek and W. J. Rdzanek, “Asymptotic formulas for the acoustic radiation impedance of an elastically supported annular plate,” J. Sound and Vibration Vol. 301 pp 544–559 (2007).
  63. J. F. Scott, “Electrical characterization of magnetoelectrical materials,” J. Mater. Res. Vol. 22(8) pp2053-2062 (2007).
  64. J. O. Kim and J. G. Lee, "Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization," J. Sound and Vibration Vol. 300 pp 214 - 249 (2007).
  65. F. G. Mitri, "Theoretical and experimental determination of the acoustic radiation force acting on an elastic cylinder in a plane progressive wave - farfield derivation approach," New J. of Physics Vol. 8 (2006). http://www.njp.org/
  66. J. F. Scott, F. D. Morrison, M. Miyake and P. Zubko, "Nano-ferroelectric materials and devices," Ferroelectrics Vol. 336 pp 237-245 (2006).
  67. B. Aronov et al, "Experimental investigation of coupled vibrations in piezoelectric cylindrical shells," J. Acoustical Soc. America Vol. 120(3) pp 1374 - 1380 (2006).
  68. W. J. Rdzanek and W. P. Rdzanek, "Green function for the problem of sound radiation by a circular sound source near two-wall corner and three-wall corner," Archives of Acoustics 31(4) pp 99 - 106 (2006).
  69. J. F. Scott, et al “Recent material characterizations of 2D and 3D thin film ferroelectric structures,” J. American Ceramic Soc. (2005).
  70. M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Reviews of Modern Physics (2005).
  71. R. Ramesh, H. Kara, C. R. Bowen, "Finite element modelling of dense and porous piezoceramic disc hydrophones," Ultraonics Vol 43 173 - 181 (2005).
  72. D. Haydock, “Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field,” J. Phys. A: Math. Gen. 38 3265-3277 (2005).
  73. D. Haydock, “Calculation of the radiation force on a cylinder in a standing wave acoustic field,” J. Phys. A: Math. Gen. 38 3279-3285 (2005).
  74. J. L. Butler, A. L. Butler, and J. A. Rice, "A tri-modal directional transducer," J. Acoustical Soc. America Vol. 115 pp 658 (2004).
  75. V. E. Glazanov and A. V. Mikhailov, "Sound radiation from a cylindrical transducer filled with a fluid medium," Acoustical Physics Vol. 50 No. 4 pp 381 - 87 (2004).
  76. J. O. Kim et al, "Radial vibration characteristics of piezoelectric cylindrical transducers," J. Sound and Vibration Vol. 276 pp 1135 - 1144 (2004).
  77. R. V. N. Melnik and K. N. Zotsenk, “Mixed electroelastic waves and CFL stability conditions in computational piezoelectricity,” Applied Numerical Mathematics 48 pp 41–62 (2004).
  78. E. K. Weitzel, R. Tasker, and W. E. Brownell, “Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior,” J. Acoustical Soc. America Vol. 144 No. 3 pp 1462-1466 (2003).
  79. Y. H. Kim and S. K. Ha, "Analysis of a disk-type stator for the piezoelectric ultrasonic motor using impedance matrix," J. Sound and Vibration Vol. 263, pp. 643-663 (2003).
  80. S. K. Ha and Y. H. Kim, "Analysis of piezoelectric multimorph in extensional and flexural motions," J. Sound and Vibration Vol. 253(5) pp. 1001-1014 (2002).
  81. H. J. Ding, R. Q. Xu, and W. Q. Chen, "Free vibration of transversely isotropic piezoelectric circular cylindrical panels," Intl.J. Mechanical Sciences Vol. 44, pp. 191-206 (2002).
  82. S. K. Ha, “Admittance matrix of asymmetric piezoelectric bimorph with two separate electrical ports under general distributed loads,” IEEE UFFC Vol. 48(1) pp 976 – 984 (2001).
  83. R. V. N. Melnik, "Computational analysis of coupled physical fields in piezothermoelastic media," Computer Physics Communications Vol. 142, pp. 231-237 (2001).
  84. S. K. Ha, "Analysis of the asymmetric triple-layered piezoelectric bimorph using equivalent circuit models," J. Acoustical Soc. America Vol.110 No. 2 pp856 (2001).
  85. S. K. Ha, "Admittance matrix of asymmetric piezoelectric bimorph with two separate electrical ports under general distributed loads," IEEE Ultrasonics, Ferroelectrics, and Frequency Control Vol. 48, No. 2, pp. 976-984 (2001).
  86. K. G. Manoj and S. K. Bhattacharyya, "Transient acoustic radiation from impulsively accelerated bodies by the finite element method," J. Acoustical Society of America Vol. 107, No. 3, pp. 1179 - 1188 (2000).
  87. Y. S. Cho, Y. E. Pak, C. S. Han, S. K. Ha, "Five port equivalent electric circuit of piezoelectric bimorph beam," Sensors and Actuators A: Physical, Vol. 84, pp 140-148 (2000).
  88. R. Tasker et al, "Techniques to determine the complex material constants of spherical and cylindrical resonators," IEEE Ultrasonics Symp. pp 987 - 990 (1999).
  89. Y.-S. Cho, Y. E. Pak, H. M. Jeong, S. K. Ha, "Five port equivalent electric circuit of piezoelectric bimorph beam," SPIE Vol. 3673 Smart Structures and Materials (Newport Beach, CA,1999).
  90. Q. Hu and S. F. Wu, "An explicit integral formulation for transient acoustic radiation," J. Acoustical Soc. America Vol. 104 pp 3251 (1998).
  91. E. L. Shenderov, "Comments on "Effect of multilayer baffles and domes on hydrophone response," J. Acoustical Society of America Vol. 102 No. 3 pp 1898 - 1899 (1997).
  92. P. R. Stepanishen, “Acoustic transient radiation and scattering from fluid-loaded elastic shells using convolution methods,” J. Acoustical Soc. America Vol. 102 110 – (1997).
  93. P. R. Stepanishen, "Transient vibratory response of fluid-loaded shells using convolution integral equations," J. Acoustical Soc. America Vol. 101 pp 1877- (1997).
  94. P. H. Whitfield, “Identification and characterization of transient water quality events by Fourier analysis,” Environment International Vol. 21(5), pp 571 (1995).
  95. S. J. Messana and F. L. DiMaggio, “Transient scattering from submerged cylindrical shell with appendages,” J. Engrg. Mech. Vol. 119 pp 1434 (1993).
  96. G. C. Gaunaurd, “Elastic and acoustic resonance wave scattering,” Appl. Mech. Rev. Vol. 42(6) pp 143-192 (1989).