About the Book

[Publisher's website]


Request inspection copy [instructors and professors only]

Data Analysis: A Model Comparison Approach to Regression, ANOVA, and Beyond is an integrated treatment of data analysis for the social and behavioral sciences. This third edition of a classic text covers all of the statistical models normally used in such analyses, such as multiple regression and analysis of variance, but it does so in an integrated manner that relies on the comparison of models of data estimated under the rubric of the general linear model.

Data Analysis also describes how the model comparison approach and uniform framework can be applied to models that include product predictors (i.e., interactions and nonlinear effects) and to observations that are nonindependent. Indeed, the analysis of nonindependent observations is treated in some detail, including models of nonindependent data with continuously varying predictors as well as standard repeated measures analysis of variance. This approach also provides an integrated introduction to multilevel or hierarchical linear models and logistic regression. Finally, Data Analysis provides guidance for the treatment of outliers and other problematic aspects of data analysis. It is intended for advanced undergraduate and graduate level courses in data analysis and offers an integrated approach that is very accessible and easy to teach.

Highlights of the third edition include:

  • a new chapter on logistic regression;
  • expanded treatment of mixed models for data with multiple random factors;
  • updated examples;
  • an enhanced website exercises for each chapter that highlight research findings from the literature; data sets, R code, and SAS output for all analyses; additional examples and problem sets; and test questions.
  • Adoption Information
  • Data Analysis: A Model Comparison Approach (3e) by Charles M. Judd, Gary H. McClelland, and Carey S. Ryan. Published by Routledge, 2017.
  • ISBN: 978-1-1388-1983-2