#Download Total.csv from FYP drive for verification.import pandas as pdimport numpy as npfrom sklearn import metrics#loading the datasetdataset = pd.read_csv('Total.csv')S = dataset.iloc[:,0:7].valuest = dataset.iloc[:,7:8].values#feature scaling#feature scalingfrom sklearn.preprocessing import StandardScalersc_S = StandardScaler()sc_t = StandardScaler()S2 = sc_S.fit_transform(S)t2 = sc_t.fit_transform(t)#fitting the SVR to the datasetfrom sklearn.svm import SVRregressor = SVR(kernel = 'rbf')regressor.fit(S2, t2)pred_t = regressor.predict(S2)t_pred =sc_t.inverse_transform(pred_t)errs = metrics.mean_absolute_error(t, t_pred)print(errs)result for 7 features:
('Mean Absolute Error:', 17.920415662979593)
('Mean Squared Error:', 574.55000643544315)
('Root Mean Squared Error:', 23.969772765619684)
Variance score: 0.39
bpmin:
average:
('Mean Absolute Error:', 11.02)
('Root Mean Squared Error:', 17.01
Variance score: 0.625
results for 3 features:
bpmin:
avg:
('Mean Absolute Error:', 17.35)
('Root Mean Squared Error:', 28.225)
Variance score: 0.01