import pandas as pd from sklearn import datasetsfrom sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import numpy as np from sklearn.metrics import mean_squared_error, r2_scorefrom sklearn.linear_model import Ridgedataset = pd.read_csv('Total.csv',names = ['alpha','PIR', 'ptt', 'bpmax' ,'bpmin', 'hrfinal', 'ih', 'il', 'meu'])X = dataset[['alpha','PIR', 'ptt']]y = dataset[['bpmin']]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScalersc_X=StandardScaler()x_train=sc_X.fit_transform(X_train)x_test=sc_X.transform(X_test)regressor = Ridge(normalize=True)#regressor = LinearRegression() #print dataset.isnull().any()regressor.fit(X_train, y_train)y_pred = regressor.predict(X_test)#print('Coefficients: \n', regressor.coef_)# The mean squared errorfrom sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))# # Explained variance score: 1 is perfect predictionprint('Variance score: %.2f' % r2_score(y_test, y_pred))3 features:
bpmax:
avg:
7 features:
avg:
bpmax:
bpmin: