import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.linear_model import Ridge
dataset = pd.read_csv('Total.csv',names = ['alpha','PIR', 'ptt', 'bpmax' ,'bpmin', 'hrfinal', 'ih', 'il', 'meu'])
X = dataset[['alpha','PIR', 'ptt']]
y = dataset[['bpmin']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
x_train=sc_X.fit_transform(X_train)
x_test=sc_X.transform(X_test)
regressor = Ridge(normalize=True)
#regressor = LinearRegression()
#print dataset.isnull().any()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
#print('Coefficients: \n', regressor.coef_)
# The mean squared error
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
# # Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(y_test, y_pred))
3 features:
bpmax:
avg:
7 features:
avg:
bpmax:
bpmin: