Lecture 1 (4/3/2018): Introduction & Course Overview
Lecture 2 (4/5/2018): Online Learning & Bandits
Lecture 3 (4/10/2018): Shallow Reinforcement Learning
Lecture 4 (4/12/2018): Imitation Learning
Lecture 5 (4/17/2018): Q-Learning & SARSA
Lecture 6 (4/19/2018): Policy Gradient & Actor Critic
Lecture 7 (4/24/2018): Inverse RL
Lecture 8 (4/26/2018): DAgger (Imitation Learning)
Lecture 9 (5/1/2018): Learning LQRs
Lecture 10 (5/3/2018): Constrained Policy Improvement
Lecture 11 (5/8/2018): Monte-Carlo Tree Search
Lecture 12 (5/10/2018): Thompson Sampling & Extensions to RL
Lecture 13 (5/15/2018): Multi-Agent RL
Lecture 14 (5/17/2018): Safe RL
Lecture 15 (5/22/2018): Generative Adversarial Imitation Learning
Lecture 16 (5/24/2018): Model-Based + Model-Free RL
Lecture 17 (5/29/2018): Smooth Imitation Learning
Lecture 18 (5/31/2018): Inverse Reward Design
Lecture 19 (6/5/2018): Off-Policy RL
Lecture 20 (6/7/2018): Poster Session