Full Reference List

[1] Upfal, J. Australian drug guide : the plain language guide to drugs and medicines of all kinds. Eighth edition. ed. Carlton, Vic., Australia, Black Inc., an imprint of Schwartz Publishing Pty Ltd, 2016.

[2] Billett, H.H., Reyes-Gil, M., Szymanski, J., Ikemura, K., Stahl, L.R., Lo, Y., et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin, and Apixaban on Mortality. Thromb Haemost. 2020, 120, 1691-9.

[3] Seelhammer, T.G., Rowse, P., Yalamuri, S. Bivalirudin for Maintenance Anticoagulation During Venovenous Extracorporeal Membrane Oxygenation for COVID-19. J Cardiothorac Vasc Anesth. 2021, 35, 1149-53.

[4] Viecca, M., Radovanovic, D., Forleo, G.B., Santus, P. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacological research. 2020, 158, 104950.

[5] Iturbe-Hernandez, T., García de Guadiana Romualdo, L., Gil Ortega, I., Martínez Francés, A., Meca Birlanga, O., Cerezo-Manchado, J.J. Dabigatran, the oral anticoagulant of choice at discharge in patients with non-valvular atrial fibrillation and COVID-19 infection: the ANIBAL protocol. Drugs in context. 2020, 9.

[6] Aliter, F.K., Al-Horani, A.R. Potential Therapeutic Benefits of Dipyridamole in COVID-19 Patients. Current Pharmaceutical Design. 2021, 27, 866-75.

[7] Marietta, M., Vandelli, P., Mighali, P., Vicini, R., Coluccio, V., D'Amico, R. Randomised controlled trial comparing efficacy and safety of high versus low Low-Molecular Weight Heparin dosages in hospitalized patients with severe COVID-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation (COVID-19 HD): a structured summary of a study protocol. Trials. 2020, 21, 574.

[8] Spaetgens, B., Nagy, M., ten Cate, H. Antiplatelet Therapy in Patients With COVID-19—More Is Less? JAMA. 2022, 327, 223-4.

[9] Capell, W.H., Barnathan, E.S., Piazza, G., Spyropoulos, A.C., Hsia, J., Bull, S., et al. Rationale and design for the study of rivaroxaban to reduce thrombotic events, hospitalization and death in outpatients with COVID-19: The PREVENT-HD study. Am Heart J. 2021, 235, 12-23.

[10] Sriram, K., Insel, P.A. Proteinase-activated receptor 1: A target for repurposing in the treatment of COVID-19? Br J Pharmacol. 2020, 177, 4971-4.

[11] Alkotaji, M. Azithromycin and ambroxol as potential pharmacotherapy for SARS-CoV-2. Int J Antimicrob Agents. 2020, 56, 106192-.

[12] Ansarin, K., Tolouian, R., Ardalan, M., Taghizadieh, A., Varshochi, M., Teimouri, S., et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial. Bioimpacts. 2020, 10, 209-15.

[13] Arentz, S., Hunter, J., Khamba, B., Mravunac, M., Lee, Z., Alexander, K., et al. Honeybee products for the treatment and recovery from viral respiratory infections including SARS-COV-2: A rapid systematic review. Integr Med Res. 2021, 10, 100779-.

[14] Shi, Z., Puyo, C.A. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag. 2020, 16, 1047-55.

[15] Verona Pharma Inc. Pilot Study of Ensifentrine or Placebo Delivered Via pMDI in Hospitalized Patients With COVID-19. 2020.

[16] Wong, H.S., Guo, C.L., Lin, G.H., Lee, K.Y., Okada, Y., Chang, W.C. Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy. Genomics. 2021, 113, 564-75.

[17] Cashman, D.P. Why the lower reported prevalence of asthma in patients diagnosed with COVID-19 validates repurposing EDTA solutions to prevent and manage treat COVID-19 disease. Med Hypotheses. 2020, 144, 110027-.

[18] Brian C. Procter, C.R.V.P.E.S.C.H.P.A.M. Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Reviews in Cardiovascular Medicine. 2020, 21, 611-4.

[19] Chen, F., Shi, Q., Pei, F., Vogt, A., Porritt, R.A., Garcia, G., Jr., et al. A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection. Mol Syst Biol. 2021, 17, e10239-e.

[20] Wall, G.C., Smith, H.L., Trump, M.W., Mohr, J.D., DuMontier, S.P., Sabates, B.L., et al. Pentoxifylline or theophylline use in hospitalized COVID-19 patients requiring oxygen support. The clinical respiratory journal. 2021, 15, 843-6.

[21] Oddy, C., McCaul, J., Keeling, P., Allington, J., Senn, D., Soni, N., et al. Pharmacological Predictors of Morbidity and Mortality in COVID-19. Journal of clinical pharmacology. 2021, 61, 1286-300.

[22] Bendjelid, K., Giraud, R., Von Düring, S. Treating hypoxemic COVID-19 "ARDS" patients with almitrine: The earlier the better? Anaesth Crit Care Pain Med. 2020, 39, 451-2.

[23] Pantos, C., Kostopanagiotou, G., Armaganidis, A., Trikas, A., Tseti, I., Mourouzis, I. Triiodothyronine for the treatment of critically ill patients with COVID-19 infection: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020, 21, 573.

[24] Dhillon, S. Desidustat: First Approval. Drugs. 2022, 82, 1207-12.

[25] Schmaier, A.A., Pajares Hurtado, G.M., Manickas-Hill, Z.J., Sack, K.D., Chen, S.M., Bhambhani, V., et al. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. JCI Insight. 2021, 6, e151527.

[26] Poloznikov, A.A., Nersisyan, S.A., Hushpulian, D.M., Kazakov, E.H., Tonevitsky, A.G., Kazakov, S.V., et al. HIF Prolyl Hydroxylase Inhibitors for COVID-19 Treatment: Pros and Cons. Front Pharmacol. 2020, 11, 621054.

[27] Elkahloun, A.G., Saavedra, J.M. Candesartan could ameliorate the COVID-19 cytokine storm. Biomed Pharmacother. 2020, 131, 110653-.

[28] Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14-.

[29] Yan, F., Huang, F., Xu, J., Yang, P., Qin, Y., Lv, J., et al. Antihypertensive drugs are associated with reduced fatal outcomes and improved clinical characteristics in elderly COVID-19 patients. Cell Discov. 2020, 6, 77.

[30] Rothlin, R.P., Vetulli, H.M., Duarte, M., Pelorosso, F.G. Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19. Drug Dev Res. 2020, 81, 768-70.

[31] Gommans, D.H.F., Nas, J., Pinto-Sietsma, S.-J., Koop, Y., Konst, R.E., Mensink, F., et al. Rationale and design of the PRAETORIAN-COVID trial: A double-blind, placebo-controlled randomized clinical trial with valsartan for PRevention of Acute rEspiraTORy dIstress syndrome in hospitAlized patieNts with SARS-COV-2 Infection Disease. Am Heart J. 2020, 226, 60-8.

[32] Si, L., Bai, H., Rodas, M., Cao, W., Oh, C.Y., Jiang, A., et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021, 5, 815-29.

[33] Adebisi, Y.A., Jimoh, N.D., Ogunkola, I.O., Uwizeyimana, T., Olayemi, A.H., Ukor, N.A., et al. The use of antibiotics in COVID-19 management: a rapid review of national treatment guidelines in 10 African countries. Tropical Medicine and Health. 2021, 49, 51.

[34] Li, G., Yuan, M., Li, H., Deng, C., Wang, Q., Tang, Y., et al. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. Int J Antimicrob Agents. 2021, 57, 106216-.

[35] Carter-Timofte, M.E., Arulanandam, R., Kurmasheva, N., Fu, K., Laroche, G., Taha, Z., et al. Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infect Dis. 2021, 7, 3034-51.

[36] Oldenburg, C.E., Doan, T. Azithromycin for severe COVID-19. The Lancet. 2020, 396, 936-7.

[37] Tian, D., Liu, Y., Liang, C., Xin, L., Xie, X., Zhang, D., et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomedicine & Pharmacotherapy. 2021, 137, 111313.

[38] Alper Öztürk, A., Namlı, İ., Aygül, A. Cefaclor Monohydrate-Loaded Colon-Targeted Nanoparticles for Use in COVID-19 Dependent Coinfections and Intestinal Symptoms: Formulation, Characterization, Release Kinetics, and Antimicrobial Activity. ASSAY and Drug Development Technologies. 2021, 19, 156-75.

[39] Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020, 10, 766-88.

[40] Meiji Pharma Spain S.A. Pilot Study of Cefditoren Pivoxil in COVID-19 Patients With Mild to Moderate Pneumonia. 2021.

[41] Lopez, A., Lakbar, I., Delamarre, L., Culver, A., Arbelot, C., Duclos, G., et al. Management of SARS-CoV-2 pneumonia in intensive care unit: An observational retrospective study comparing two bundles. J Crit Care. 2021, 65, 200-4.

[42] Yacouba, A., Olowo-Okere, A., Yunusa, I. Repurposing of antibiotics for clinical management of COVID-19: a narrative review. Ann Clin Microbiol Antimicrob. 2021, 20, 37-.

[43] Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. 2020, 10, 766-88.

[44] Zou, L., Dai, L., Zhang, X., Zhang, Z., Zhang, Z. Hydroxychloroquine and chloroquine: a potential and controversial treatment for COVID-19. Arch Pharm Res. 2020, 43, 765-72.

[45] Karampela, I., Dalamaga, M. Could Respiratory Fluoroquinolones, Levofloxacin and Moxifloxacin, Prove to be Beneficial as an Adjunct Treatment in COVID-19? Arch Med Res. 2020, 51, 741-2.

[46] Yamamoto, K., Hosogaya, N., Sakamoto, N., Yoshida, H., Ishii, H., Yatera, K., et al. Efficacy of clarithromycin in patients with mild COVID-19 pneumonia not receiving oxygen administration: protocol for an exploratory, multicentre, open-label, randomised controlled trial (CAME COVID-19 study). BMJ Open. 2021, 11, e053325.

[47] Olaleye, O.A., Kaur, M., Onyenaka, C., Adebusuyi, T. Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 - Spike protein interaction in vitro. Heliyon. 2021, 7, e06426-e.

[48] Yates, P.A., Newman, S.A., Oshry, L.J., Glassman, R.H., Leone, A.M., Reichel, E. Doxycycline treatment of high-risk COVID-19-positive patients with comorbid pulmonary disease. Therapeutic Advances in Respiratory Disease. 2020, 14, 1753466620951053.

[49] Poddighe, D., Aljofan, M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir Chem Chemother. 2020, 28, 2040206620961712-.

[50] Jamal, Q.M.S., Ahmad, V., Alharbi, A.H., Ansari, M.A., Alzohairy, M.A., Almatroudi, A., et al. Therapeutic development by repurposing drugs targeting SARS-CoV-2 spike protein interactions by simulation studies. Saudi J Biol Sci. 2021, 28, 4560-8.

[51] Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results. New England Journal of Medicine. 2020, 384, 497-511.

[52] Caly, L., Druce, J.D., Catton, M.G., Jans, D.A., Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020, 178, 104787.

[53] Roostaei Firozabad, A., Meybodi, Z.A., Mousavinasab, S.R., Sahebnasagh, A., Jelodar, M.G., Karimzadeh, I., et al. Efficacy and safety of Levamisole treatment in clinical presentations of non-hospitalized patients with COVID-19: a double-blind, randomized, controlled trial. BMC infectious diseases. 2021, 21, 297-.

[54] Gendrot, M., Duflot, I., Boxberger, M., Delandre, O., Jardot, P., Le Bideau, M., et al. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J Infect Dis. 2020, 99, 437-40.

[55] Kotta, S., Aldawsari, H.M., Badr-Eldin, S.M., Alhakamy, N.A., Md, S., Nair, A.B., et al. Combating the Pandemic COVID-19: Clinical Trials, Therapies and Perspectives. Frontiers in Molecular Biosciences. 2020, 7.

[56] Xu, J., Shi, P.-Y., Li, H., Zhou, J. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infect Dis. 2020, 6, 909-15.

[57] Rocco, P.R.M., Silva, P.L., Cruz, F.F., Junior, M.A.C.M., Tierno, P.F.G.M.M., Moura, M.A., et al. Early use of nitazoxanide in mild Covid-19 disease: randomised, placebo-controlled trial. European Respiratory Journal. 2020, 2003725.

[58] Alexpandi, R., De Mesquita, J.F., Pandian, S.K., Ravi, A.V. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico analysis. Frontiers in Microbiology. 2020, 11.

[59] Ahmad, J., Ikram, S., Ahmad, F., Rehman, I.U., Mushtaq, M. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) – a drug repurposing study. Heliyon. 2020, 6, e04502.

[60] Roy Chattopadhyay, N., Chatterjee, K., Banerjee, A., Choudhuri, T. Combinatorial therapeutic trial plans for COVID-19 treatment armed up with antiviral, antiparasitic, cell-entry inhibitor, and immune-boosters. Virusdisease. 2020, 31, 1-11.

[61] Puhl, A.C., Fritch, E.J., Lane, T.R., Tse, L.V., Yount, B.L., Sacramento, C.Q., et al. Repurposing the Ebola and Marburg Virus inhibitors tilorone, quinacrine, and pyronaridine: in vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega. 2021, 6, 7454-68.

[62] Younis, N.K., Zareef, R.O., Al Hassan, S.N., Bitar, F., Eid, A.H., Arabi, M. Hydroxychloroquine in COVID-19 Patients: Pros and Cons. Front Pharmacol. 2020, 11, 597985-.

[63] Husain, A., Byrareddy, S.N. Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19. Chem Biol Interact. 2020, 331, 109282-.

[64] Prof. Dr. Shohael Mahmud Arafat. Role of Co-trimoxazole in Severe COVID-19 Patients. 2020.

[65] Persoons, L., Vanderlinden, E., Vangeel, L., Wang, X., Do, N.D.T., Foo, S.-Y.C., et al. Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Res. 2021, 193, 105127-.

[66] Stachulski, A.V., Taujanskas, J., Pate, S.L., Rajoli, R.K.R., Aljayyoussi, G., Pennington, S.H., et al. Therapeutic Potential of Nitazoxanide: An Appropriate Choice for Repurposing versus SARS-CoV-2? ACS Infect Dis. 2021, 7, 1317-31.

[67] Schein, C.H. Repurposing approved drugs for cancer therapy. Br Med Bull. 2021, 137, 13-27.

[68] Rutsaert, S., Steens, J.M., Gineste, P., Cole, B., Kint, S., Barrett, P.N., et al. Safety, tolerability and impact on viral reservoirs of the addition to antiretroviral therapy of ABX464, an investigational antiviral drug, in individuals living with HIV-1: a Phase IIa randomised controlled study. Journal of virus eradication. 2019, 5, 10-22.

[69] Roschewski, M., Lionakis Michail, S., Sharman Jeff, P., Roswarski, J., Goy, A., Monticelli, M.A., et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Science Immunology. 2020, 5, eabd0110.

[70] Levitt, J.E., Hedlin, H., Duong, S., Lu, D., Lee, J., Bunning, B., et al. Evaluation of acebilustat, a selective inhibitor of leukotriene B4 biosynthesis, for treatment of outpatients with mild-moderate COVID-19 disease: A randomized, double-blind, placebo- controlled Phase 2 trial. Clin Infect Dis. 2023.

[71] Bianconi, V., Violi, F., Fallarino, F., Pignatelli, P., Sahebkar, A., Pirro, M. Is Acetylsalicylic Acid a Safe and Potentially Useful Choice for Adult Patients with COVID-19 ? Drugs. 2020, 80, 1383-96.

[72] Geiger, J.D., Khan, N., Murugan, M., Boison, D. Possible Role of Adenosine in COVID-19 Pathogenesis and Therapeutic Opportunities. Front Pharmacol. 2020, 11.

[73] Wells, J.M. COVID-19 Study of Safety and Tolerability of Alvelestat (COSTA). 2020.

[74] Khan, N.A. Anakinra for severe forms of COVID-19. The Lancet Rheumatology. 2020, 2, e586-e7.

[75] Angion Biomedica Corp. Study to Assess Efficacy and Safety Relative to Standard of Care in Patients With COVID-19 Pneumonia. 2020.

[76] Olisova, O.Y., Anpilogova, E.M., Svistunova, D.A. Apremilast as a potential treatment option for COVID-19: No symptoms of infection in a psoriatic patient. Dermatol Ther. 2020, 33, e13668-e.

[77] Coyle, J., Igbinomwanhia, E., Sanchez-Nadales, A., Danciu, S., Chu, C., Shah, N. A Recovered Case of COVID-19 Myocarditis and ARDS Treated With Corticosteroids, Tocilizumab, and Experimental AT-001. JACC: Case Reports. 2020, 2, 1331-6.

[78] Gordon, D., Hellriegel, E.T., Hope, H.R., Burt, D., Monahan, J.B. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the MK2 inhibitor ATI-450 in healthy subjects: a placebo-controlled, randomized phase 1 study. Clin Pharmacol. 2021, 13, 123-34.

[79] Rodriguez-Nava, G., Trelles-Garcia, D.P., Yanez-Bello, M.A., Chung, C.W., Trelles-Garcia, V.P., Friedman, H.J. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study. Critical Care. 2020, 24, 429.

[80] Schreiber, A., Viemann, D., Schöning, J., Schloer, S., Mecate Zambrano, A., Brunotte, L., et al. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cellular and Molecular Life Sciences. 2022, 79, 65.

[81] Galera Therapeutics Inc. A Trial of GC4419 in Patients With Critical Illness Due to COVID-19. 2020.

[82] McCafferty, K., Hollowood, Z., Allen, M., Lockhart, D., Chorlton, J., Martin, J. ARCADIA study protocol: a phase II, randomised, double-blind, placebo-controlled clinical trial to assess the safety and efficacy of AZD1656 in patients with diabetes hospitalised with suspected or confirmed COVID-19. BMJ open. 2021, 11, e049650-e.

[83] Kalil, A.C., Patterson, T.F., Mehta, A.K., Tomashek, K.M., Wolfe, C.R., Ghazaryan, V., et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. New England Journal of Medicine. 2020, 384, 795-807.

[84] BioAge Labs Inc. Study to Evaluate the Safety, Tolerability, and Efficacy of BGE-175 in Hospitalized Adults With Coronavirus Disease 2019 (COVID-19) That Are Not in Respiratory Failure. 2021.

[85] Shen, X.B., Chen, X., Zhang, Z.Y., Wu, F.F., Liu, X.H. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. European Journal of Medicinal Chemistry. 2021, 225, 113818.

[86] Oliver, J.C., Silva, E.N., Soares, L.M., Scodeler, G.C., Santos, A.S., Corsetti, P.P., et al. Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus. Ther Adv Vaccines Immunother. 2022, 10, 25151355221144845.

[87] Yu, L.-M., Bafadhel, M., Dorward, J., Hayward, G., Saville, B.R., Gbinigie, O., et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021, 398, 843-55.

[88] Frank, M. Bucillamine in the treatment of patients with mild to moderate COVID-19: an interview with Michael Frank. Future Microbiol. 2022, 17, 157-9.

[89] Skayem, C., Ayoub, N. Carvedilol and COVID-19: A Potential Role in Reducing Infectivity and Infection Severity of SARS-CoV-2. Am J Med Sci. 2020, 360, 300-.

[90] Baghaki, S., Yalcin, C.E., Baghaki, H.S., Aydin, S.Y., Daghan, B., Yavuz, E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. International Journal of Infectious Diseases. 2020, 101, 29-32.

[91] Okamoto, M., Toyama, M., Baba, M. The chemokine receptor antagonist cenicriviroc inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020, 182, 104902-.

[92] Plaze, M., Attali, D., Petit, A.C., Blatzer, M., Simon-Loriere, E., Vinckier, F., et al. Repurposing chlorpromazine to treat COVID-19: The reCoVery study. Encephale. 2020, 46, 169-72.

[93] Mori, N., Katayama, M., Nukaga, S. Triple therapy with hydroxychloroquine, azithromycin, and ciclesonide for COVID-19 pneumonia. J Microbiol Immunol Infect. 2021, 54, 109-12.

[94] Miller, J., Bruen, C., Schnaus, M., Zhang, J., Ali, S., Lind, A., et al. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. Crit Care. 2020, 24, 502-.

[95] Yousefi, H., Mashouri, L., Okpechi, S.C., Alahari, N., Alahari, S.K. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochemical pharmacology. 2021, 183, 114296-.

[96] Gálvez-Romero, J.L., Palmeros-Rojas, O., Real-Ramírez, F.A., Sánchez-Romero, S., Tome-Maxil, R., Ramírez-Sandoval, M.P., et al. Cyclosporine A plus low-dose steroid treatment in COVID-19 improves clinical outcomes in patients with moderate to severe disease: A pilot study. J Intern Med. 2021, 289, 906-20.

[97] Kosiborod, M., Berwanger, O., Koch, G.G., Martinez, F., Mukhtar, O., Verma, S., et al. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes, Obesity and Metabolism. 2021, 23, 886-96.

[98] Quagliariello, V., Bonelli, A., Caronna, A., Lombari, M.C., Conforti, G., Libutti, M., et al. SARS-CoV-2 infection: NLRP3 inflammasome as plausible target to prevent cardiopulmonary complications? European review for medical and pharmacological sciences. 2020, 24, 9169-71.

[99] Group, R.C., Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell, J.L., et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021, 384, 693-704.

[100] Zhao, H., Davies, R., Ma, D. Potential therapeutic value of dexmedetomidine in COVID-19 patients admitted to ICU. Br J Anaesth. 2021, 126, e33-e5.

[101] Madurka, I., Vishnevsky, A., Soriano, J.B., Gans, S.J., Ore, D.J.S., Rendon, A., et al. DFV890: a new oral NLRP3 inhibitor-tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection. 2022, 1-14.

[102] Dowarah, J., Marak, B.N., Yadav, U.C.S., Singh, V.P. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem. 2021, 114, 105016.

[103] Palma, G., Pasqua, T., Silvestri, G., Rocca, C., Gualtieri, P., Barbieri, A., et al. PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Frontiers in Immunology. 2020, 11.

[104] Enzychem Lifesciences Corporation. To Evaluate Safety and Efficacy of EC-18 in COVID-19 Infection to Pneumonia. 2020.

[105] Reznik, S.E., Tiwari, A.K., Ashby, C.R., Jr. Edaravone: A potential treatment for the COVID-19-induced inflammatory syndrome? Pharmacological research. 2020, 160, 105055-.

[106] Hoertel, N., Sánchez-Rico, M., Vernet, R., Beeker, N., Jannot, A.-S., Neuraz, A., et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Molecular Psychiatry. 2021, 26, 5199-212.

[107] Janowitz, T., Gablenz, E., Pattinson, D., Wang, T.C., Conigliaro, J., Tracey, K., et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut. 2020, 69, 1592.

[108] Orienti, I., Gentilomi, G.A., Farruggia, G. Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In COVID-19. Int J Mol Sci. 2020, 21, 3812.

[109] Teymouri, S., Pourbayram Kaleybar, S., Hejazian, S.S., Hejazian, S.M., Ansarin, K., Ardalan, M., et al. The effect of Fingolimod on patients with moderate to severe COVID-19. Pharmacology Research & Perspectives. 2023, 11, e01039.

[110] Nakazono, A., Nakamaru, Y., Ramezanpour, M., Kondo, T., Watanabe, M., Hatakeyama, S., et al. Fluticasone Propionate Suppresses Poly(I:C)-Induced ACE2 in Primary Human Nasal Epithelial Cells. Frontiers in cellular and infection microbiology. 2021, 11, 655666.

[111] Lenze, E.J., Mattar, C., Zorumski, C.F., Stevens, A., Schweiger, J., Nicol, G.E., et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA. 2020, 324, 2292-300.

[112] Strich, J.R., Ramos-Benitez, M.J., Randazzo, D., Stein, S.R., Babyak, A., Davey, R.T., et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 patient plasma: a potential therapeutic. The Journal of Infectious Diseases. 2021, 223, 981-4.

[113] Foresee Pharmaceuticals Co Ltd. A Phase 2/3, Randomized, Double Blind, Placebo Controlled, Multicenter Study to Evaluate the Efficacy and Safety of FP-025 in Patients With Severe to Critical COVID 19 With Associated Acute Respiratory Distress Syndrome (ARDS). 2021.

[114] Brennecke, A., Villar, L., Wang, Z., Doyle, L.M., Meek, A., Reed, M., et al. Is Inhaled Furosemide a Potential Therapeutic for COVID-19? Am J Med Sci. 2020, 360, 216-21.

[115] Mishra, G.P., Mulani, J. Corticosteroids for COVID-19: the search for an optimum duration of therapy. The Lancet Respiratory Medicine. 2021, 9, e8.

[116] Treon, S.P., Castillo, J.J., Skarbnik, A.P., Soumerai, J.D., Ghobrial, I.M., Guerrera, M.L., et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020, 135, 1912-5.

[117] MediciNova. Efficacy, Safety, Tolerability, and Biomarkers of MN-166 (Ibudilast) in Patients Hospitalized With COVID-19 and at Risk for ARDS. 2020.

[118] Algernon Pharmaceuticals. Safety and Efficacy of NP-120 (Ifenprodil) for the Treatment of Hospitalized Patient With Confirmed COVID-19 Disease. 2020.

[119] Emadi, A., Chua, J.V., Talwani, R., Bentzen, S.M., Baddley, J. Safety and efficacy of imatinib for hospitalized adults with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020, 21, 897.

[120] Sofia Magdalena, T., Juan José Nieto, F., Samuel, C., Morten, H., Asger, S., Celeste, P., et al. Imiquimod shows anti-viral actions in human bronchial epithelium - implications for COVID-19 treatment. European Respiratory Journal. 2021, 58, PA2136.

[121] Marinella, M.A. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract. 2020, 74, e13535-e.

[122] Meng, X., Ling, Y., Zhang, L., Zhang, Q., Dong, P., Zhu, T., et al. Potential for jaktinib hydrochloride to treat cytokine storms in patients with COVID-19. Bioscience trends. 2020, 14, 161-7.

[123] Finnerty, D.T., Buggy, D.J. A novel role for lidocaine in COVID-19 patients? Br J Anaesth. 2020, 125, e391-e4.

[124] Fulcrum Therapeutics. Losmapimod Safety and Efficacy in COVID-19 (LOSVID). 2020.

[125] Vlach, J., Bender, A.T., Przetak, M., Pereira, A., Deshpande, A., Johnson, T., et al. Discovery of M5049: a novel selective TLR7/8 inhibitor for treatment of autoimmunity. Journal of Pharmacology and Experimental Therapeutics. 2020, JPET-AR-2020-000275.

[126] Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M.F., Hussain, A., Rehman, M.T., et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep. 2020, 40, BSR20201256.

[127] Bahrampour Juybari, K., Pourhanifeh, M.H., Hosseinzadeh, A., Hemati, K., Mehrzadi, S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res. 2020, 287, 198108-.

[128] Kjeldsen, S., Nielsen, J., Mertz Nørgård, B., Kjeldsen, J. Mesalazine in Inflammatory Bowel Disease and COVID-19: Hospitalization and Adverse In-Hospital Outcomes Based on Nationwide Data. Inflamm Bowel Dis. 2022, 28, 1513-9.

[129] Dardano, A., Del Prato, S. Metformin: an inexpensive and effective treatment in people with diabetes and COVID-19? The Lancet Healthy Longevity. 2021, 2, e6-e7.

[130] May, B.C., Gallivan, K.H. Levocetirizine and montelukast in the COVID-19 treatment paradigm. International immunopharmacology. 2021, 103, 108412-.

[131] Tran, L., Kurkinen, M. Alzheimer drug candidate NA-831 for the treatment of Dementia caused by Covid-19- A Phase 2/3 clinical trial methodology. Alzheimer's & Dementia. 2022, 18, e066242.

[132] Choubey, A., Dehury, B., Kumar, S., Medhi, B., Mondal, P. Naltrexone a potential therapeutic candidate for COVID-19. J Biomol Struct Dyn. 2020, 1-8.

[133] Kiani, P., Scholey, A., Dahl, T.A., McMann, L., Iversen, J.M., Verster, J.C. In Vitro Assessment of the Antiviral Activity of Ketotifen, Indomethacin and Naproxen, Alone and in Combination, against SARS-CoV-2. Viruses. 2021, 13, 558.

[134] George, P.M., Wells, A.U., Jenkins, R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020, 8, 807-15.

[135] Ebrahimi, S.A. Noscapine, a possible drug candidate for attenuation of cytokine release associated with SARS-CoV-2. Drug Dev Res. 2020, 81, 765-7.

[136] Smith, C.D., Maines, L.W., Keller, S.N., Katz Ben-Yair, V., Fathi, R., Plasse, T.F., et al. Recent Progress in the Development of Opaganib for the Treatment of Covid-19. Drug Des Devel Ther. 2022, 16, 2199-211.

[137] Pawełczyk, A., Zaprutko, L. Anti-COVID drugs: repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med Chem. 2020, 12, 1743-57.

[138] López-Iranzo, J.F., López-Rodas, M.A., Franco, L., López-Rodas, G. Pentoxifylline and Oxypurinol: Potential Drugs to Prevent the “Cytokine Release (Storm) Syndrome” Caused by SARS-CoV-2? Current Pharmaceutical Design. 2020, 26, 4515-21.

[139] Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec. COVID-19 Ozanimod Intervention Study (COZI). 2020.

[140] Cafardi, J., Miller, C., Terebelo, H., Tewell, C., Benzaquen, S., Park, D., et al. Efficacy and Safety of Pacritinib vs Placebo for Patients With Severe COVID-19: A Phase 2 Randomized Clinical Trial. JAMA Network Open. 2022, 5, e2242918-e.

[141] Seirafianpour, F., Mozafarpoor, S., Fattahi, N., Sadeghzadeh-Bazargan, A., Hanifiha, M., Goodarzi, A. Treatment of COVID-19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol Ther. 2020, 33, e13733-e.

[142] Danto, S.I., Shojaee, N., Singh, R.S.P., Li, C., Gilbert, S.A., Manukyan, Z., et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of PF-06650833, a selective interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor, in single and multiple ascending dose randomized phase 1 studies in healthy subjects. Arthritis Res Ther. 2019, 21, 269-.

[143] Can-Fite BioPharma. Piclidenoson for Treatment of COVID-19. 2020.

[144] Myall, K.J., Mukherjee, B., Castanheira, A.M., Lam, J.L., Benedetti, G., Mak, S.M., et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann Am Thorac Soc. 2021, 18, 799-806.

[145] Cecon, E., Izabelle, C., Poder, S.L., Real, F., Zhu, A., Tu, L., et al. Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2. J Pineal Res. 2022, 72, e12772-e.

[146] Li, H.-H., Liu, C.-C., Hsu, T.-W., Lin, J.-H., Hsu, J.-W., Li, A.F.-Y., et al. Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Part Fibre Toxicol. 2021, 18, 11-.

[147] Rossi, R., Talarico, M., Coppi, F., Boriani, G. Protective role of statins in COVID 19 patients: importance of pharmacokinetic characteristics rather than intensity of action. Intern Emerg Med. 2020, 15, 1573-6.

[148] D’Alessio, A., Del Poggio, P., Bracchi, F., Cesana, G., Sertori, N., Di Mauro, D., et al. Low-dose ruxolitinib plus steroid in severe SARS-CoV-2 pneumonia. Leukemia. 2021, 35, 635-8.

[149] Restorbio Inc. A Phase 2 Study of RTB101 as COVID-19 Post-Exposure Prophylaxis in Older Adults. 2020.

[150] Estrada, E. Protein-driven mechanism of multiorgan damage in COVID-19. Med Drug Discov. 2020, 100069-.

[151] Bischof, E., Siow, R.C., Zhavoronkov, A., Kaeberlein, M. The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19. The Lancet Healthy Longevity. 2021, 2, e105-e11.

[152] Solanich, X., Antolí, A., Padullés, N., Fanlo-Maresma, M., Iriarte, A., Mitjavila, F., et al. Pragmatic, open-label, single-center, randomized, phase II clinical trial to evaluate the efficacy and safety of methylprednisolone pulses and tacrolimus in patients with severe pneumonia secondary to COVID-19: The TACROVID trial protocol. Contemporary clinical trials communications. 2021, 21, 100716.

[153] Singh, D., Bogus, M., Moskalenko, V., Lord, R., Moran, E.J., Crater, G.D., et al. A phase 2 multiple ascending dose study of the inhaled pan-JAK inhibitor nezulcitinib (TD–0903) in severe COVID-19. European Respiratory Journal. 2021, 2100673.

[154] Maio, N., Cherry, S., Schultz, D.C., Hurst, B.L., Linehan, W.M., Rouault, T.A. TEMPOL inhibits SARS-CoV-2 replication and development of lung disease in the Syrian hamster model. iScience. 2022, 25, 105074.

[155] Khalil, A., Kamar, A., Nemer, G. Thalidomide-Revisited: Are COVID-19 Patients Going to Be the Latest Victims of Yet Another Theoretical Drug-Repurposing? Frontiers in Immunology. 2020, 11.

[156] Guimarães, P.O., Quirk, D., Furtado, R.H., Maia, L.N., Saraiva, J.F., Antunes, M.O., et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. New England Journal of Medicine. 2021, 385, 406-15.

[157] Vanda Pharmaceuticals. ODYSSEY: A Study to Investigate the Efficacy of Tradipitant in Treating Severe or Critical COVID-19 Infection. 2020.

[158] El-Ashmawy, N.E., Lashin, A.-H.A., Okasha, K.M., Abo Kamer, A.M., Mostafa, T.M., El-Aasr, M., et al. The plausible mechanisms of tramadol for treatment of COVID-19. Med Hypotheses. 2021, 146, 110468.

[159] van den Berg, D.F., te Velde, A.A. Severe COVID-19: NLRP3 inflammasome dysregulated. Frontiers in Immunology. 2020, 11.

[160] Huang, H., Hu, P.F., Sun, L.L., Guo, Y.B., Wang, Q., Liu, Z.M., et al. Treatment of patients with Covid-19 with a high dose of ulinastatin. Experimental and therapeutic medicine. 2022, 23, 121.

[161] Vascular Biogenics Ltd. operating as VBL Therapeutics. A Study to Evaluate the Efficacy and Safety of VB-201 in Patients With COVID-19. 2021.

[162] Fagone, P., Muthumani, K., Mangano, K., Magro, G., Meroni, P.L., Kim, J.J., et al. VGX-1027 modulates genes involved in lipopolysaccharide-induced Toll-like receptor 4 activation and in a murine model of systemic lupus erythematosus. Immunology. 2014, 142, 594-602.

[163] Biohaven Pharmaceuticals Inc. Safety and Efficacy Trial of Zavegepant* Intranasal for Hospitalized Patients With COVID-19 Requiring Supplemental Oxygen. 2020.

[164] Serra, A., Fratello, M., Federico, A., Ojha, R., Provenzani, R., Tasnadi, E., et al. Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation. Briefings in Bioinformatics. 2021, bbab507.

[165] D. E. Shaw Research. "Molecular Dynamics Simulations Related to SARS-CoV-2," D. E. Shaw Research Technical Data, 2020. http://www.deshawresearch.com/resources_sarscov2.html.

[166] Castaldo, N., Aimo, A., Castiglione, V., Padalino, C., Emdin, M., Tascini, C. Safety and efficacy of amiodarone in a patient with COVID-19. JACC Case Rep. 2020, 2, 1307-10.

[167] Baranov, M.V., Bianchi, F., van den Bogaart, G. The PIKfyve inhibitor apilimod: a double-edged sword against COVID-19. Cells. 2020, 10, 30.

[168] Wilkinson, T., Dixon, R., Page, C., Carroll, M., Griffiths, G., Ho, L.-P., et al. ACCORD: A multicentre, seamless, phase 2 adaptive randomisation platform study to assess the efficacy and safety of multiple candidate agents for the treatment of COVID-19 in hospitalised patients: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020, 21, 691-.

[169] Goren, A., Wambier, C.G., Herrera, S., McCoy, J., Vaño-Galván, S., Gioia, F., et al. Anti-androgens may protect against severe COVID-19 outcomes: results from a prospective cohort study of 77 hospitalized men. J Eur Acad Dermatol Venereol. 2021, 35, e13-e5.

[170] Welén, K., Rosendal, E., Gisslén, M., Lenman, A., Freyhult, E., Fonseca-Rodríguez, O., et al. A Phase 2 Trial of the Effect of Antiandrogen Therapy on COVID-19 Outcome: No Evidence of Benefit, Supported by Epidemiology and In Vitro Data. European Urology. 2022, 81, 285-93.

[171] Çağla Begüm, A., Gözde, Ç., Gökçe, C.-Ü. Small-molecule antiviral agents in ongoing clinical trials for COVID-19. Current Drug Targets. 2021, 22, 1-20.

[172] Bakovic, A., Risner, K., Bhalla, N., Alem, F., Chang, T.L., Weston, W.K., et al. Brilacidin demonstrates inhibition of SARS-CoV-2 in cell culture. Viruses. 2021, 13, 271.

[173] Breining, P., Frølund, A.L., Højen, J.F., Gunst, J.D., Staerke, N.B., Saedder, E., et al. Camostat mesylate against SARS-CoV-2 and COVID-19—Rationale, dosing and safety. Basic & Clinical Pharmacology & Toxicology. 2021, 128, 204-12.

[174] Tobback, E., Degroote, S., Buysse, S., Delesie, L., Van Dooren, L., Vanherrewege, S., et al. Efficacy and safety of camostat mesylate in early COVID-19 disease in an ambulatory setting: a randomized placebo-controlled phase II trial. Int J Infect Dis. 2022, 122, 628-35.

[175] Cheng, Y.-W., Chao, T.-L., Li, C.-L., Chiu, M.-F., Kao, H.-C., Wang, S.-H., et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 2020, 33, 108254-.

[176] Wu, C., Zheng, M., Yang, Y., Gu, X., Yang, K., Li, M., et al. Furin: a potential therapeutic target for COVID-19. iScience. 2020, 23, 101642.

[177] Peralta-Garcia, A., Torrens-Fontanals, M., Stepniewski, T.M., Grau-Expósito, J., Perea, D., Ayinampudi, V., et al. Entrectinib-A SARS-CoV-2 Inhibitor in Human Lung Tissue (HLT) Cells. Int J Mol Sci. 2021, 22, 13592.

[178] Li, F., Han, M., Dai, P., Xu, W., He, J., Tao, X., et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications. 2021, 12, 866.

[179] Yasmin, F., Zeeshan, M.H., Ullah, I. The role of fenofibrate in the treatment of COVID-19. Ann Med Surg (Lond). 2021, 102974-.

[180] Trezza, A., Iovinelli, D., Santucci, A., Prischi, F., Spiga, O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Scientific Reports. 2020, 10, 13866.

[181] Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020, 586, 113-9.

[182] Costanzi, E., Kuzikov, M., Esposito, F., Albani, S., Demitri, N., Giabbai, B., et al. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Int J Mol Sci. 2021, 22, 11779.

[183] Bestle, D., Heindl, M.R., Limburg, H., Van Lam van, T., Pilgram, O., Moulton, H., et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020, 3, e202000786.

[184] Takahashi, W., Yoneda, T., Koba, H., Ueda, T., Tsuji, N., Ogawa, H., et al. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. Int J Infect Dis. 2021, 102, 529-31.

[185] Quinn, T.M., Gaughan, E.E., Bruce, A., Antonelli, J., O'Connor, R., Li, F., et al. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. eBioMedicine. 2022, 76.

[186] Scalise, M., Indiveri, C. Repurposing nimesulide, a potent inhibitor of the B0AT1 subunit of the SARS-CoV-2 receptor, as a therapeutic adjuvant of COVID-19. SLAS DISCOVERY: Advancing the Science of Drug Discovery. 2020, 25, 1171-3.

[187] Prabhakara, C., Godbole, R., Sil, P., Jahnavi, S., Gulzar, S.-e.-J., van Zanten, T.S., et al. Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLOS Pathogens. 2021, 17, e1009706.

[188] Hempel, T., Elez, K., Krüger, N., Raich, L., Shrimp, J.H., Danov, O., et al. Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chem Sci. 2021, 12, 12600-9.

[189] McCoy, J., Goren, A., Cadegiani, F.A., Vaño-Galván, S., Kovacevic, M., Situm, M., et al. Proxalutamide reduces the rate of hospitalization for COVID-19 male outpatients: a randomized double-blinded placebo-controlled trial. Front Med (Lausanne). 2021, 8, 668698-.

[190] Cadegiani, F.A., Goren, A., Wambier, C.G. Spironolactone may provide protection from SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and renin-angiotensin-aldosterone system (RAAS). Med Hypotheses. 2020, 143, 110112.

[191] Al Adem, K., Shanti, A., Stefanini, C., Lee, S. Inhibition of SARS-CoV-2 entry into host cells using small molecules. Pharmaceuticals (Basel). 2020, 13, 447.

[192] Nojomi, M., Yassin, Z., Keyvani, H., Makiani, M.J., Roham, M., Laali, A., et al. Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC Infectious Diseases. 2020, 20, 954.

[193] Hattori, S.-i., Higashi-Kuwata, N., Hayashi, H., Allu, S.R., Raghavaiah, J., Bulut, H., et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications. 2021, 12, 668.

[194] Chou, C.-Y., Chien, C.-H., Han, Y.-S., Prebanda, M.T., Hsieh, H.-P., Turk, B., et al. Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochemical Pharmacology. 2008, 75, 1601-9.

[195] Ann, H., Kim, K.H., Choi, H.Y., Chang, H.H., Han, S.H., Kim, K.H., et al. Safety and efficacy of ziagen (abacavir sulfate) in HIV-infected Korean patients. Infect Chemother. 2017, 49, 205-12.

[196] Pott Junior, H., de Oliveira, M.F.B., Gambero, S., Amazonas, R.B. Randomized clinical trial of famciclovir or acyclovir for the treatment of herpes zoster in adults. International Journal of Infectious Diseases. 2018, 72, 11-5.

[197] Dando, T.M., Plosker, G.L. Adefovir dipivoxil. Drugs. 2003, 63, 2215-34.

[198] Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. Journal of Medicinal Chemistry. 2020, 63, 4562-78.

[199] Pawlotsky, J.-M. COVID-19 Pandemic: Time to Revive the Cyclophilin Inhibitor Alisporivir. Clinical Infectious Diseases. 2020, 71, 2191-4.

[200] Araújo, R., Aranda-Martínez, J.D., Aranda-Abreu, G.E. Amantadine treatment for people with COVID-19. Arch Med Res. 2020, 51, 739-40.

[201] Gonzalez-Martinez, A., Guerrero-Peral Á, L., Arias-Rivas, S., Silva, L., Sierra, Á., Gago-Veiga, A.B., et al. Amitriptyline for post-COVID headache: effectiveness, tolerability, and response predictors. J Neurol. 2022, 269, 5702-9.

[202] Zhu, H., Chen, C.Z., Sakamuru, S., Zhao, J., Ngan, D.K., Simeonov, A., et al. Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. Scientific Reports. 2021, 11, 6725.

[203] Soremekun, O.S., Omolabi, K.F., Adewumi, A.T., Soliman, M.E.S. Exploring the effect of ritonavir and TMC-310911 on SARS-CoV-2 and SARS-CoV main proteases: potential from a molecular perspective. Future Science OA. 2020, 7, FSO640.

[204] Tompa, D.R., Immanuel, A., Srikanth, S., Kadhirvel, S. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. International Journal of Biological Macromolecules. 2021, 172, 524-41.

[205] Good Steven, S., Westover, J., Jung Kie, H., Zhou, X.-J., Moussa, A., La Colla, P., et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrobial Agents and Chemotherapy. 65, e02479-20.

[206] Berliba, E., Bogus, M., Vanhoutte, F., Berghmans, P.-J., Good Steven, S., Moussa, A., et al. Safety, pharmacokinetics, and antiviral activity of AT-527, a novel purine nucleotide prodrug, in Hepatitis C virus-infected subjects with or without cirrhosis. Antimicrobial Agents and Chemotherapy. 63, e01201-19.

[207] Fintelman-Rodrigues, N., Sacramento Carolina, Q., Ribeiro Lima, C., Souza da Silva, F., Ferreira André, C., Mattos, M., et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrobial Agents and Chemotherapy. 64, e00825-20.

[208] Reznikov, L.R., Norris, M.H., Vashisht, R., Bluhm, A.P., Li, D., Liao, Y.-S.J., et al. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021, 538, 173-9.

[209] Yu, B., Chang, J. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduction and Targeted Therapy. 2020, 5, 236.

[210] Biering, S.B., Van Dis, E., Wehri, E., Yamashiro, L.H., Nguyenla, X., Dugast-Darzacq, C., et al. Screening a Library of FDA-Approved and Bioactive Compounds for Antiviral Activity against SARS-CoV-2. ACS Infect Dis. 2021, 7, 2337-51.

[211] Teoh, S.L., Lim, Y.H., Lai, N.M., Lee, S.W.H. Directly acting antivirals for COVID-19: where do we stand? 2020, 11.

[212] Lou, Y., Liu, L., Yao, H., Hu, X., Su, J., Xu, K., et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. European Journal of Pharmaceutical Sciences. 2021, 157, 105631.

[213] Sun, Q., Ye, F., Liang, H., Liu, H., Li, C., Lu, R., et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease. Signal Transduction and Targeted Therapy. 2021, 6, 212.

[214] Schultz, D.C., Johnson, R.M., Ayyanathan, K., Miller, J., Whig, K., Kamalia, B., et al. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature. 2022.

[215] Vatansever, E.C., Yang, K.S., Drelich, A.K., Kratch, K.C., Cho, C.-C., Kempaiah, K.R., et al. Bepridil is potent against SARS-CoV-2 in vitro. Proceedings of the National Academy of Sciences. 2021, 118, e2012201118.

[216] Sun, C., Zhang, J., Wei, J., Zheng, X., Zhao, X., Fang, Z., et al. Screening, simulation, and optimization design of small molecule inhibitors of the SARS-CoV-2 spike glycoprotein. PLOS ONE. 2021, 16, e0245975.

[217] Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., Wu, Y., et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature communications. 2020, 11, 4417-.

[218] Coelho, A.R., Oliveira, P.J. Dihydroorotate dehydrogenase inhibitors in SARS-CoV-2 infection. Eur J Clin Invest. 2020, 50, e13366-e.

[219] Rabasseda, X. Brivudine: A herpes virostatic with rapid antiviral activity and once-daily dosing. Drugs of today (Barcelona, Spain : 1998). 2003, 39, 359-71.

[220] Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., et al. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology. 2020, 27, 529-32.

[221] Clarke, E.C., Nofchissey, R.A., Ye, C., Bradfute, S.B. The iminosugars celgosivir, castanospermine and UV-4 inhibit SARS-CoV-2 replication. Glycobiology. 2021, 31, 378-84.

[222] Al-Horani, R.A., Kar, S. Potential anti-SARS-CoV-2 therapeutics that target the post-entry stages of the viral life cycle: a comprehensive review. Viruses. 2020, 12, 1092.

[223] Chen, J., Xia, L., Liu, L., Xu, Q., Ling, Y., Huang, D., et al. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum Infectious Diseases. 2020, 7.

[224] Shen, Z., Ratia, K., Cooper, L., Kong, D., Lee, H., Kwon, Y., et al. Potent, novel SARS-CoV-2 PLpro inhibitors block viral replication in monkey and human cell cultures. bioRxiv. 2021, 2021.02.13.431008.

[225] Chan, H.-T., Chao, C.-M., Lai, C.-C. Sofosbuvir/daclatasvir in the treatment of COVID-19 infection: A meta-analysis. Journal of Infection. 2021, 82, e34-e5.

[226] Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., et al. First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine (Baltimore). 2020, 99, e23357-e.

[227] Ali, N., Prasad, K., AlAsmari, A.F., Alharbi, M., Rashid, S., Kumar, V. Genomics-guided targeting of stress granule proteins G3BP1/2 to inhibit SARS-CoV-2 propagation. International journal of biological macromolecules. 2021, 190, 636-48.

[228] Lin, M.-H., Moses, D.C., Hsieh, C.-H., Cheng, S.-C., Chen, Y.-H., Sun, C.-Y., et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res. 2018, 150, 155-63.

[229] Weglarz-Tomczak, E., Tomczak, J.M., Talma, M., Burda-Grabowska, M., Giurg, M., Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Scientific Reports. 2021, 11, 3640.

[230] Sax, P.E., Rockstroh, J.K., Luetkemeyer, A.F., Yazdanpanah, Y., Ward, D., Trottier, B., et al. Switching to Bictegravir, Emtricitabine, and Tenofovir Alafenamide in virologically suppressed adults with Human Immunodeficiency Virus. Clin Infect Dis. 2021, 73, e485-e93.

[231] Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P.G., Margitich, V. Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells. Antivir Chem Chemother. 2018, 26, 2040206618811416-.

[232] Mukae, H., Yotsuyanagi, H., Ohmagari, N., Doi, Y., Imamura, T., Sonoyama, T., et al. A Randomized Phase 2/3 Study of Ensitrelvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in Japanese Patients with Mild-to-Moderate COVID-19 or Asymptomatic SARS-CoV-2 Infection: Results of the Phase 2a Part. Antimicrobial Agents and Chemotherapy. 2022, 66, e00697-22.

[233] Indu, P., Rameshkumar, M.R., Arunagirinathan, N., Al-Dhabi, N.A., Valan Arasu, M., Ignacimuthu, S. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach. J Infect Public Health. 2020, 13, 1856-61.

[234] Mullen, P.J., Garcia, G., Purkayastha, A., Matulionis, N., Schmid, E.W., Momcilovic, M., et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nature Communications. 2021, 12, 1876.

[235] Hassanipour, S., Arab-Zozani, M., Amani, B., Heidarzad, F., Fathalipour, M., Martinez-de-Hoyo, R. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Scientific Reports. 2021, 11, 11022.

[236] Torres, H.A., Arduino, R.C. Fosamprenavir calcium plus ritonavir for HIV infection. Expert Review of Anti-infective Therapy. 2007, 5, 349-63.

[237] Julander, J.G., Demarest, J.F., Taylor, R., Gowen, B.B., Walling, D.M., Mathis, A., et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res. 2021, 195, 105180.

[238] Rolling, K.E., Jorgenson, M.R., Descourouez, J.L., Mandelbrot, D.A., Redfield, R.R., Smith, J.A. Ganciclovir-resistant cytomegalovirus infection in abdominal solid organ transplant recipients: case series and review of the literature. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2017, 37, 1258-71.

[239] Halfon, P., Bestion, E., Zandi, K., Andreani, J., Baudoin, J.-P., La Scola, B., et al. GNS561 exhibits potent in vitro antiviral activity against SARS-CoV-2 through autophagy inhibition. bioRxiv. 2020, 2020.10.06.327635.

[240] Sulejmani, N., Jafri, S.-M. Grazoprevir/elbasvir for the treatment of adults with chronic hepatitis C: a short review on the clinical evidence and place in therapy. Hepat Med. 2018, 10, 33-42.

[241] Karaoui, L.R., Mansour, H., Chahine, E.B. Elbasvir–grazoprevir: A new direct-acting antiviral combination for hepatitis C. American Journal of Health-System Pharmacy. 2017, 74, 1533-40.

[242] Fu, Z., Huang, B., Tang, J., Liu, S., Liu, M., Ye, Y., et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nature Communications. 2021, 12, 488.

[243] Hahn, F., Wangen, C., Häge, S., Peter, A.S., Dobler, G., Hurst, B., et al. IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro. Viruses. 2020, 12, 1394.

[244] Ikematsu, H., Kawai, N. Laninamivir octanoate: a new long-acting neuraminidase inhibitor for the treatment of influenza. Expert Review of Anti-infective Therapy. 2011, 9, 851-7.

[245] Chen, Y.W., Yiu, C.-P.B., Wong, K.-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020, 9, 129-.

[246] Wang, Q., Guo, H., Li, Y., Jian, X., Hou, X., Zhong, N., et al. Efficacy and Safety of Leflunomide for Refractory COVID-19: A Pilot Study. Front Pharmacol. 2021, 12, 581833-.

[247] Horby, P.W., Mafham, M., Bell, J.L., Linsell, L., Staplin, N., Emberson, J., et al. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet. 2020, 396, 1345-52.

[248] Drayman, N., DeMarco Jennifer, K., Jones Krysten, A., Azizi, S.-A., Froggatt Heather, M., Tan, K., et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science. 2021, 373, 931-6.

[249] Şimşek-Yavuz, S., Komsuoğlu Çelikyurt, F.I. An update of anti-viral treatment of COVID-19. Turk J Med Sci. 2021, 51, 3372-90.

[250] Holman, W., Holman, W., McIntosh, S., Painter, W., Painter, G., Bush, J., et al. Accelerated first-in-human clinical trial of EIDD-2801/MK-4482 (molnupiravir), a ribonucleoside analog with potent antiviral activity against SARS-CoV-2. Trials. 2021, 22, 561.

[251] Bai, Y., Ye, F., Feng, Y., Liao, H., Song, H., Qi, J., et al. Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal Transduction and Targeted Therapy. 2021, 6, 51.

[252] Musarrat, F., Chouljenko, V., Dahal, A., Nabi, R., Chouljenko, T., Jois, S.D., et al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol. 2020, 92, 2087-95.

[253] Tan, Q., Duan, L., Ma, Y., Wu, F., Huang, Q., Mao, K., et al. Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Bioorg Chem. 2020, 104, 104257-.

[254] de Vries, M., Mohamed Adil, S., Prescott Rachel, A., Valero-Jimenez Ana, M., Desvignes, L., O’Connor, R., et al. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. Journal of Virology. 95, e01819-20.

[255] Hoffman, R.L., Kania, R.S., Brothers, M.A., Davies, J.F., Ferre, R.A., Gajiwala, K.S., et al. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. Journal of Medicinal Chemistry. 2020, 63, 12725-47.

[256] Ahmad, B., Batool, M., Ain, Q.U., Kim, M.S., Choi, S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci. 2021, 22, 9124.

[257] Kirby, P., Dunne, A., King, D.H., Corey, L. Double-blind randomized clinical trial of self-administered podofilox solution versus vehicle in the treatment of genital warts. The American Journal of Medicine. 1990, 88, 465-9.

[258] Luban, J., Sattler, R.A., Mühlberger, E., Graci, J.D., Cao, L., Weetall, M., et al. The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Res. 2021, 292, 198246-.

[259] Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020, 582, 289-93.

[260] Beigel, J.H., Tomashek, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kalil, A.C., et al. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine. 2020, 383, 1813-26.

[261] Tong, S., Su, Y., Yu, Y., Wu, C., Chen, J., Wang, S., et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int J Antimicrob Agents. 2020, 56, 106114-.

[262] Xiong, R., Zhang, L., Li, S., Sun, Y., Ding, M., Wang, Y., et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein Cell. 2020, 11, 723-39.

[263] Kashyap, T., Murray, J., Walker, C.J., Chang, H., Tamir, S., Hou, B., et al. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antiviral Res. 2021, 192, 105115-.

[264] Lo, H.S., Hui, K.P.Y., Lai, H.-M., He, X., Khan, K.S., Kaur, S., et al. Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir. ACS Central Science. 2021, 7, 792-802.

[265] Krafcikova, P., Silhan, J., Nencka, R., Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications. 2020, 11, 3717.

[266] Yin, W., Luan, X., Li, Z., Zhou, Z., Wang, Q., Gao, M., et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural & Molecular Biology. 2021, 28, 319-25.

[267] Han, Y., Zeng, A., Liao, H., Liu, Y., Chen, Y., Ding, H. The efficacy and safety comparison between tenofovir and entecavir in treatment of chronic hepatitis B and HBV related cirrhosis: A systematic review and Meta-analysis. International Immunopharmacology. 2017, 42, 168-75.

[268] Yang, L., Pei, R.-j., Li, H., Ma, X.-n., Zhou, Y., Zhu, F.-h., et al. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacologica Sinica. 2021, 42, 1347-53.

[269] Wu, X., Yu, K., Wang, Y., Xu, W., Ma, H., Hou, Y., et al. Efficacy and safety of Triazavirin therapy for Coronavirus Disease 2019: a pilot randomized controlled trial. Engineering (Beijing). 2020, 6, 1185-91.

[270] Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas Scott, J., et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances. 6, eabd4596.

[271] Kumar, S.U., Priya, N.M., Nithya, S.R., Kannan, P., Jain, N., Kumar, D.T., et al. A review of novel coronavirus disease (COVID-19): based on genomic structure, phylogeny, current shreds of evidence, candidate vaccines, and drug repurposing. 3 Biotech. 2021, 11, 198.

[272] Shen, Z., Ratia, K., Cooper, L., Kong, D., Lee, H., Kwon, Y., et al. Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. Journal of medicinal chemistry. 2021, acs.jmedchem.1c01307.

[273] El Bairi, K., Trapani, D., Petrillo, A., Le Page, C., Zbakh, H., Daniele, B., et al. Repurposing anticancer drugs for the management of COVID-19. Eur J Cancer. 2020, 141, 40-61.

[274] Neupane, N.P., Karn, A.K., Mukeri, I.H., Pathak, P., Kumar, P., Singh, S., et al. Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (M(pro)) and human angiotensin-converting enzyme 2 (ACE2). Biocatal Agric Biotechnol. 2021, 32, 101924-.

[275] Vivek-Ananth, R.P., Rana, A., Rajan, N., Biswal, H.S., Samal, A. In Silico Identification of Potential Natural Product Inhibitors of Human Proteases Key to SARS-CoV-2 Infection. Molecules. 2020, 25, 3822.

[276] Tahir Ul Qamar, M., Alqahtani, S.M., Alamri, M.A., Chen, L.-L. Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020, 10, 313-9.

[277] Yang, C.M., Cheng, H.Y., Lin, T.C., Chiang, L.C., Lin, C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-beta-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol. 2007, 110, 555-8.

[278] Bahadur Gurung, A., Ajmal Ali, M., Lee, J., Abul Farah, M., Mashay Al-Anazi, K. Structure-based virtual screening of phytochemicals and repurposing of FDA approved antiviral drugs unravels lead molecules as potential inhibitors of coronavirus 3C-like protease enzyme. J King Saud Univ Sci. 2020, 32, 2845-53.

[279] Majumder, R., Mandal, M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. J Biomol Struct Dyn. 2020, 1-16.

[280] Swargiary, A., Mahmud, S., Saleh, M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19. J Biomol Struct Dyn. 2020, 1-15.

[281] Sakurai, Y., Ngwe Tun, M.M., Kurosaki, Y., Sakura, T., Inaoka, D.K., Fujine, K., et al. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem Biophys Res Commun. 2021, 545, 203-7.

[282] Vardhan, S., Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med. 2020, 124, 103936-.

[283] Teli, D.M., Shah, M.B., Chhabria, M.T. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Frontiers in molecular biosciences. 2021, 7, 599079-.

[284] Zhang, Z.-R., Zhang, Y.-N., Li, X.-D., Zhang, H.-Q., Xiao, S.-Q., Deng, F., et al. A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2. Signal transduction and targeted therapy. 2020, 5, 218-.

[285] Khubber, S., Hashemifesharaki, R., Mohammadi, M., Gharibzahedi, S.M.T. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutrition Journal. 2020, 19, 124.

[286] Kar, P., Kumar, V., Vellingiri, B., Sen, A., Jaishee, N., Anandraj, A., et al. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. J Biomol Struct Dyn. 2020, 1-11.

[287] Kothandan, R., Rajan, C.A.S.G., Arjun, J., Raj, R.R.M., Syed, S. Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection. Beni Suef Univ J Basic Appl Sci. 2021, 10, 9-.

[288] Srivastava, A., Siddiqui, S., Ahmad, R., Mehrotra, S., Ahmad, B., Srivastava, A.N. Exploring nature's bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. J Biomol Struct Dyn. 2020, 1-51.

[289] Rajagopal, K., Varakumar, P., Baliwada, A., Byran, G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Futur J Pharm Sci. 2020, 6, 104-.

[290] Basu, A., Sarkar, A., Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Scientific reports. 2020, 10, 17699-.

[291] Beheshtirouy, S., Khani, E., Khiali, S., Entezari-Maleki, T. Investigational antiviral drugs for the treatment of COVID-19 patients. Archives of Virology. 2022, 167, 751-805.

[292] Khalil, A., Tazeddinova, D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat Prod Bioprospect. 2020, 10, 411-29.

[293] Hayashi, K., Narutaki, K., Nagaoka, Y., Hayashi, T., Uesato, S. Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. Biological & pharmaceutical bulletin. 2010, 33, 1199-205.

[294] Falade, V.A., Adelusi, T.I., Adedotun, I.O., Abdul-Hammed, M., Lawal, T.A., Agboluaje, S.A. In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (M(pro)). In Silico Pharmacol. 2021, 9, 9-.

[295] Huang, S., Liu, Y.e., Zhang, Y., Zhang, R., Zhu, C., Fan, L., et al. Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner. Signal Transduction and Targeted Therapy. 2020, 5, 266.

[296] Chowdhury, P. In silico investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn. 2021, 39, 6792-809.

[297] Beeraka, N.M., Sadhu, S.P., Madhunapantula, S.V., Rao Pragada, R., Svistunov, A.A., Nikolenko, V.N., et al. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors—The Current Status. Frontiers in Immunology. 2020, 11.

[298] Nugraha, R.V., Ridwansyah, H., Ghozali, M., Khairani, A.F., Atik, N. Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. Evid Based Complement Alternat Med. 2020, 2020, 2560645-.

[299] Yepes-Pérez, A.F., Herrera-Calderon, O., Sánchez-Aparicio, J.-E., Tiessler-Sala, L., Maréchal, J.-D., Cardona-G, W. Investigating Potential Inhibitory Effect of Uncaria tomentosa (Cat's Claw) against the Main Protease 3CL(pro) of SARS-CoV-2 by Molecular Modeling. Evid Based Complement Alternat Med. 2020, 2020, 4932572-.

[300] Berretta, A.A., Silveira, M.A.D., Cóndor Capcha, J.M., De Jong, D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomedicine & Pharmacotherapy. 2020, 131, 110622.

[301] Das, P., Majumder, R., Mandal, M., Basak, P. In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis. Journal of Biomolecular Structure and Dynamics. 2021, 39, 6265-80.

[302] Belhassan, A., Zaki, H., Chtita, S., Alaqarbeh, M., Alsakhen, N., Benlyas, M., et al. Camphor, Artemisinin and Sumac Phytochemicals as inhibitors against COVID-19: Computational approach. Comput Biol Med. 2021, 136, 104758-.

[303] Anil, S.M., Shalev, N., Vinayaka, A.C., Nadarajan, S., Namdar, D., Belausov, E., et al. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Scientific Reports. 2021, 11, 1462.

[304] Kumar, A., Choudhir, G., Shukla, S.K., Sharma, M., Tyagi, P., Bhushan, A., et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn. 2021, 39, 3760-70.

[305] Vilhelmova, N., Jacquet, R., Quideau, S., Stoyanova, A., Galabov, A.S. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2. Antiviral Res. 2011, 89, 174-81.

[306] Gurung, A.B., Ali, M.A., Lee, J., Farah, M.A., Al-Anazi, K.M. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M(pro) enzyme through in silico approach. Life Sci. 2020, 255, 117831-.

[307] Du, R., Cooper, L., Chen, Z., Lee, H., Rong, L., Cui, Q. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CL(pro). Antiviral Res. 2021, 190, 105075-.

[308] Argano, C., Mallaci Bocchio, R., Natoli, G., Scibetta, S., Lo Monaco, M., Corrao, S. Protective Effect of Vitamin D Supplementation on COVID-19-Related Intensive Care Hospitalization and Mortality: Definitive Evidence from Meta-Analysis and Trial Sequential Analysis. Pharmaceuticals (Basel). 2023, 16.

[309] Yang, Z., Wang, Y., Zheng, Z., Zhao, S., Zhao, J., Lin, Q., et al. Antiviral activity of Isatis indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro. Int J Mol Med. 2013, 31, 867-73.

[310] Reyes, A.Z., Hu, K.A., Teperman, J., Wampler Muskardin, T.L., Tardif, J.-C., Shah, B., et al. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Annals of the Rheumatic Diseases. 2021, 80, 550.

[311] Manne, M., Goudar, G., Varikasuvu, S.R., Khetagoudar, M.C., Kanipakam, H., Natarajan, P., et al. Cordifolioside: potent inhibitor against M(pro) of SARS-CoV-2 and immunomodulatory through human TGF-β and TNF-α. 3 Biotech. 2021, 11, 136-.

[312] Binette, V., Côté, S., Haddad, M., Nguyen, P.T., Bélanger, S., Bourgault, S., et al. Corilagin and 1,3,6-Tri-O-galloy-β-D-glucose: potential inhibitors of SARS-CoV-2 variants. Physical chemistry chemical physics : PCCP. 2021, 23, 14873-88.

[313] Kordzadeh, A., Ramazani Saadatabadi, A., Hadi, A. Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation. Heliyon. 2020, 6, e05681-e.

[314] Miryan, M., Bagherniya, M., Sahebkar, A., Soleimani, D., Rouhani, M.H., Iraj, B., et al. Effects of curcumin-piperine co-supplementation on clinical signs, duration, severity, and inflammatory factors in patients with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020, 21, 1027.

[315] Pitsillou, E., Liang, J., Karagiannis, C., Ververis, K., Darmawan, K.K., Ng, K., et al. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem. 2020, 89, 107408-.

[316] Szabó, Z., Marosvölgyi, T., Szabó, É., Bai, P., Figler, M., Verzár, Z. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Frontiers in Physiology. 2020, 11.

[317] Wang, A., Sun, Y., Liu, Q., Wu, H., Liu, J., He, J., et al. Low dose of emetine as potential anti-SARS-CoV-2 virus therapy: preclinical in vitro inhibition and in vivo pharmacokinetic evidences. Molecular biomedicine. 2020, 1, 14.

[318] Sharma, P., Joshi, T., Mathpal, S., Joshi, T., Pundir, H., Chandra, S., et al. Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. J Biomol Struct Dyn. 2020, 1-12.

[319] Verdoorn, B.P., Evans, T.K., Hanson, G.J., Zhu, Y., Langhi Prata, L.G.P., Pignolo, R.J., et al. Fisetin for COVID-19 in skilled nursing facilities: Senolytic trials in the COVID era. Journal of the American Geriatrics Society. 2021, 69, 3023-33.

[320] Petit, L., Vernès, L., Cadoret, J.-P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol. 2021, 1-24.

[321] Kar, P., Sharma, N.R., Singh, B., Sen, A., Roy, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J Biomol Struct Dyn. 2021, 39, 4774-85.

[322] Kim, Y.S., Chung, H.-S., Noh, S.G., Lee, B., Chung, H.Y., Choi, J.-G. Geraniin Inhibits the Entry of SARS-CoV-2 by Blocking the Interaction between Spike Protein RBD and Human ACE2 Receptor. Int J Mol Sci. 2021, 22, 8604.

[323] Islam, R., Parves, M.R., Paul, A.S., Uddin, N., Rahman, M.S., Mamun, A.A., et al. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 2021, 39, 3213-24.

[324] Singh, R., Gautam, A., Chandel, S., Ghosh, A., Dey, D., Roy, S., et al. Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study. Molecules. 2020, 25, 4604.

[325] Haggag, Y.A., El-Ashmawy, N.E., Okasha, K.M. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses. 2020, 144, 109957-.

[326] Choy, K.-T., Wong, A.Y.-L., Kaewpreedee, P., Sia, S.F., Chen, D., Hui, K.P.Y., et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020, 178, 104786-.

[327] Chikhale, R.V., Gupta, V.K., Eldesoky, G.E., Wabaidur, S.M., Patil, S.A., Islam, M.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics. 2021, 39, 6660-75.

[328] Shadrack, D.M., Deogratias, G., Kiruri, L.W., Swai, H.S., Vianney, J.-M., Nyandoro, S.S. Ensemble-based screening of natural products and FDA-approved drugs identified potent inhibitors of SARS-CoV-2 that work with two distinct mechanisms. J Mol Graph Model. 2021, 105, 107871-.

[329] Shree, P., Mishra, P., Selvaraj, C., Singh, S.K., Chaube, R., Garg, N., et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn. 2020, 1-14.

[330] Padhi, S., Masi, M., Chourasia, R., Rajashekar, Y., Rai, A.K., Evidente, A. ADMET profile and virtual screening of plant and microbial natural metabolites as SARS-CoV-2 S1 glycoprotein receptor binding domain and main protease inhibitors. Eur J Pharmacol. 2021, 890, 173648-.

[331] Arokiyaraj, S., Stalin, A., Kannan, B.S., Shin, H. Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CL(pro), Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics (Basel). 2020, 9, 863.

[332] Yang, M.W., Chen, F., Zhu, D.J., Li, J.Z., Zhu, J.L., Zeng, W., et al. [Clinical efficacy of Matrine and Sodium Chloride Injection in treatment of 40 cases of COVID-19]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2020, 45, 2221-31.

[333] Miller, R., Wentzel, A.R., Richards, G.A. COVID-19: NAD(+) deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Med Hypotheses. 2020, 144, 110044-.

[334] Balkrishna, A., Mittal, R., Arya, V. Computational Evidences of Phytochemical Mediated Disruption of PLpro Driven Replication of SARS-CoV-2: A Therapeutic Approach against COVID-19. Current Pharmaceutical Biotechnology. 2021, 22, 1350-9.

[335] Liu, S., Wei, W., Shi, K., Cao, X., Zhou, M., Liu, Z. In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. Journal of Ethnopharmacology. 2014, 155, 1061-7.

[336] Soto-Acosta, R., Bautista-Carbajal, P., Syed, G.H., Siddiqui, A., Del Angel, R.M. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antiviral Res. 2014, 109, 132-40.

[337] Wang, J., Zhang, X., Omarini, A.B., Li, B. Virtual screening for functional foods against the main protease of SARS-CoV-2. Journal of Food Biochemistry. 2020, 44, e13481.

[338] Verma, S., Twilley, D., Esmear, T., Oosthuizen, C.B., Reid, A.-M., Nel, M., et al. Anti-SARS-CoV Natural Products With the Potential to Inhibit SARS-CoV-2 (COVID-19). Front Pharmacol. 2020, 11.

[339] Zhong, B., Peng, W., Du, S., Chen, B., Feng, Y., Hu, X., et al. Oridonin Inhibits SARS-CoV-2 by Targeting Its 3C-Like Protease. Small Sci. 2022, 2, 2100124.

[340] Zálešák, F., Bon, D.J.-Y.D., Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological research. 2019, 146, 104284.

[341] Yalçın, S., Yalçınkaya, S., Ercan, F. Determination of Potential Drug Candidate Molecules of the Hypericum perforatum for COVID-19 Treatment. Curr Pharmacol Rep. 2021, 1-7.

[342] Lani, R., Hassandarvish, P., Shu, M.-H., Phoon, W.H., Chu, J.J.H., Higgs, S., et al. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res. 2016, 133, 50-61.

[343] Singh, S., Sk, M.F., Sonawane, A., Kar, P., Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2021, 39, 6249-64.

[344] Saeedi-Boroujeni, A., Mahmoudian-Sani, M.-R. Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation. 2021, 18, 3.

[345] Bosch-Barrera, J., Martin-Castillo, B., Buxó, M., Brunet, J., Encinar, J.A., Menendez, J.A. Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. J Clin Med. 2020, 9, 1770.

[346] Gasparello, J., D'Aversa, E., Papi, C., Gambari, L., Grigolo, B., Borgatti, M., et al. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine. 2021, 87, 153583-.

[347] Wang, S.-C., Chen, Y., Wang, Y.-C., Wang, W.-J., Yang, C.-S., Tsai, C.-L., et al. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am J Cancer Res. 2020, 10, 4538-46.

[348] Pollara, J.J., Laster, S.M., Petty, I.T.D. Inhibition of poxvirus growth by Terameprocol, a methylated derivative of nordihydroguaiaretic acid. Antiviral Res. 2010, 88, 287-95.

[349] Ray, M., Sarkar, S., Rath, S.N. Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2. Genomics Inform. 2020, 18, e43-e.

[350] Ahmad, A., Rehman, M.U., Ahmad, P., Alkharfy, K.M. Covid-19 and thymoquinone: Connecting the dots. Phytother Res. 2020, 34, 2786-9.

[351] Jovic, T.H., Ali, S.R., Ibrahim, N., Jessop, Z.M., Tarassoli, S.P., Dobbs, T.D., et al. Could Vitamins Help in the Fight Against COVID-19? Nutrients. 2020, 12, 2550.

[352] Holford, P., Carr, A.C., Jovic, T.H., Ali, S.R., Whitaker, I.S., Marik, P.E., et al. Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients. 2020, 12, 3760.

[353] Straughn, A.R., Kakar, S.S. Withaferin A: a potential therapeutic agent against COVID-19 infection. Journal of Ovarian Research. 2020, 13, 79.

[354] Kumar, V., Dhanjal, J.K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn. 2020, 1-13.

[355] Kuo, Y.-C., Kuo, Y.-H., Lin, Y.-L., Tsai, W.-J. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Res. 2006, 70, 112-20.