48. Seager BA, Harant A, Contreras MP, Hou LY, Wu CH, Kamoun S, Madhuprakash J. 2025. A plant pathogen effector blocks stepwise assembly of a helper NLR resistosome. bioRxiv doi: https://doi.org/10.1101/2025.07.14.664264
47. Hou LY, Wu CH, Lin NS. 2025. Virus-induced upregulation of mitochondrial metabolism modulates cytosolic redox balance and defense responses. bioRxiv doi: https://doi.org/10.1101/2025.07.05.663277
46. Chen YF, Lin KY, Huang CY, Hou LY, Yuen ELH, Sun WCJ, Chiang BJ, Chang CW, Wang HY, Bozkurt TO, Wu CH*. 2025. Single-cell-resolved calcium and organelle dynamics in resistosome-mediated cell death. bioRxiv doi: https://doi.org/10.1101/2025.06.27.662017 (*Corresponding author)
45. Luedke D, Sakai T, Kourelis J, Toghani AA, Adachi H, Posbeyikian A, Frijters R, Pai H, Harant A, Lopez-Agudelo JC, Tang B, Ernst K, Ganal M, Verhage A, Wu CH*, Kamoun S*. 2025. A root-specific NLR network confers resistance to plant parasitic nematodes. The Plant Cell koaf145, https://doi.org/10.1093/plcell/koaf145 bioRxiv doi: https://doi.org/10.1101/2023.12.14.571630 (*Corresponding author)
44. Wu Y, Chang HY, Wu CH, Lai EM, Kuo CH. Comparative transcriptomics reveals context- and strain-specific regulatory programs of Agrobacterium during plant colonization. Microbial Genomics https://doi.org/10.1099/mgen.0.001485 bioRxiv doi: https://doi.org/10.1101/2025.05.27.656240
43. Liu MS, Huang TK, Wang YC, Wang SC, Wu CH, Kuo CH, Lai EM. 2025. Floral stage optimization and immune evasion enhance Agrobacterium-mediated genome editing in Arabidopsis. bioRxiv https://doi.org/10.1101/2025.05.07.652770
42. Lopez-Agudelo JC#, Goh FJ#, Tchabashvili S, Huang YS, Huang CY, Lee KT, Wang YC, Wu Y, Chang HX, Kuo CH, Lai EM, Wu CH*. 2025. Rhizobium rhizogenes A4-derived strains mediate hyper-efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants. Plant Biotechnology Journal http://doi.org/10.1111/pbi.70083 (#Equal contribution, *Corresponding author)
41. Lüdke D, Pai H, Toghani AA, Harant A, Wu CH, Kamoun S. 2025. The autoactivity of tomato helper NLR immune proteins of the NRC clade is unaltered in prf mutants of Nicotiana benthamiana. bioRxiv https://doi.org/10.1101/2025.03.11.642614
40. Wang HY, Lee KT, Goh FJ, Bozkurt TO, Wu CH*. 2025. A hydrophobic core in the coiled-coil domain essential for NRC resistosome function. bioRxiv https://doi.org/10.1101/2025.01.21.634219 (*Corresponding author)
39. Selvaraj M, Toghani AA, Pai H, Sugihara Y, Kourelis J, Yuen ELH, Ibrahim T, Zhao H, Xie R, Maqbool A, De la Concepcion JC, Banfield MJ, Derevnina L, Petre B, Lawson DM, Bozkurt TO, Wu CH, Kamoun S and Contreras MP. 2024. Activation of plant immunity through conversion of a helper NLR homodimer into a resistosome. PLOS Biology https://doi.org/10.1371/journal.pbio.3002868 bioRxiv https://doi.org/10.1101/2023.12.17.572070
38. Ibrahim T#, Yuen ELH#, Wang HY#, King FJ#, Toghani AA#, Kourelis J, Vuolo C, Adamkova V, Castel B, Jones JDG, Wu CH, Kamoun S, Bozkurt TO. 2024. A helper NLR targets organellar membranes to trigger immunity. bioRxiv https://doi.org/10.1101/2024.09.19.613839
37. Huang CY#, Huang YS#, Sugihara Y, Wang HY, Huang LT, Lopez-Agudelo JC, Chen YF, Lin KY, Chiang BJ, Toghani AA, Kourelis J, Wang CH, Derevnina L, Wu CH*. 2024. Subfunctionalization of NRC3 altered the genetic structure of the Nicotiana NRC network. PLOS Genetics https://doi.org/10.1371/journal.pgen.1011402 bioRxiv doi: https://doi.org/10.1101/2023.12.12.571219 (#Equal contribution, *Corresponding author)
36. Chiang BJ#, Lin KY#, Chen YF, Huang CY, Goh FJ, Huang LT, Chen LH, Wu CH*. 2024. Development of a tightly regulated copper-inducible transient gene expression system in Nicotiana benthamiana incorporating suicide exon and Cre recombinase. New Phytologist https://doi.org/10.1111/nph.20021 bioRxiv doi: https://doi.org/10.1101/2024.03.23.586378 (#Equal contribution, *Corresponding author)
35. Goh FJ, Huang CY, Derevnina L, Wu CH*. 2024. NRC immune receptor networks show diversified hierarchical genetic architecture across plant lineages. The Plant Cell koae179. https://doi.org/10.1093/plcell/koae179. bioRxiv doi: https://doi.org/10.1101/2023.10.25.563953 (*Corresponding author)
34. Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S*, Wu CH*, Adachi H*. 2024. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. The Plant Cell koae154. https://doi.org/10.1093/plcell/koae154. bioRxiv doi: https://doi.org/10.1101/2023.10.23.563533 (*Corresponding author)
33. Chen JY, Sang H, Chilvers MI, Wu CH, Chang HX. 2024. Characterization of soybean chitinase genes induced by Rhizobacteria involved in the defense against Fusarium oxysporum. Front. Plant Sci. doi: 10.3389/fpls.2024.1341181
32. Wu CH and Derevnina L. 2023. The battle within: How pathogen effectors suppress NLR-mediated immunity. Current Opinion in Plant Biology https://doi.org/10.1016/j.pbi.2023.102396
31. Sheikh AH, Zacharia I, Pardal1 AJ, Dominguez-Ferreras A, Sueldo DJ, Kim JG, Balmuth A, Gutierrez JR, Conlan BF, Ullah N, Nippe OM, Girija AM, Wu CH, Sessa G, Jones AME, Grant MR, Gifford ML, Mudgett MB, Rathjen JP and Ntoukakis V. 2023. Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Nature Communications 14: 2568. https://doi.org/10.1038/s41467-023-38103-6
30. Contreras MP, Pai Hsuan, Selvaraj M, Toghani AA, Lawson DM, Tumtas Y, Duggan C, Yuen ELH, Stevenson CEM, Harant A, Wu CH, Bozkurt TO, Kamoun S, Derevnina L. Resurrection of plant disease resistance proteins via helper NLR bioengineering. 2023. Science Advances 9, eadg3861. DOI: 10.1126/sciadv.adg3861 bioRxiv https://doi.org/10.1101/2022.12.11.519957
29. Oh S, Kim S, Park HJ, Kim MS, Seo MK, Wu CH, Lee HA, Kim HS, Kamoun S, Choi D. 2023. Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans. Plant Biotechnology Journal https://doi.org/10.1111/pbi.14039
28. Adachi H*, Sakai T, Harant A, Duggan C, Bozkurt TO, Wu CH*, Kamoun S*. 2023. An atypical NLR protein modulates the NRC immune receptor network. PLOS Genetics 19(1): e1010500. https://doi.org/10.1371/journal.pgen.1010500 bioRxiv doi: https://doi.org/10.1101/2021.11.15.468391 (*Corresponding author)
27. Ahn HK, Lin X, Olave-Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu CH, Kamoun S, Jones JDG. 2023. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J e111484. https://doi.org/10.15252/embj.2022111484
26. Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH, Cruces AV, Kourelis J, Ahn HK, Lee KT, Wu CH, Bozkurt TO, Derevnina L, Kamoun S. 2023. Sensor NLR immune proteins activate oligomerization of their NRC helper. EMBO J e111519. https://doi.org/10.15252/embj.2022111519 bioRxiv doi: https://doi.org/10.1101/2022.04.25.489342
25. Kourelis J, Contreras MP, Harant A, Pai H, Lüdke D, Adachi H, Derevnina L, Wu CH*, Kamoun S*. 2022. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. PLOS Genetics https://doi.org/10.1371/journal.pgen.1010414 bioRxiv doi: https://doi.org/10.1101/2021.09.28.461843 (*Corresponding author)
24. Lin X, Olave-Achury A, Heal R, Witek K, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. 2022. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. Molecular Plant DOI:https://doi.org/10.1016/j.molp.2022.07.012 bioRxiv doi.org/10.1101/2021.06.10.447899
23. Derevnina L, Contreras MP, Adachi H, Upson JL, Cruces AV, Xie R, Sklenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout S, Goverse A, Maqbool A, Wu CH*, and Kamoun S*. 2021. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLOS Biology 19(8): e3001136. https://doi.org/10.1371/journal.pbio.3001136 (*Corresponding author)
22. Duggan C, Moratto E, Savage Z, Hamilton E, Adachi H, Wu CH, Leary AY, Tumtas Y, Maqbool A, Kamoun S, Bozkurt TO. 2021. Dynamic accumulation of a helper NLR at the plant-pathogen interface underpins pathogen recognition. PNAS 118:e2104997118 https://doi.org/10.1073/pnas.2104997118
21. Duxbury Z, Wu CH*, Ding P*. 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol 72:155-184 https://doi.org/10.1146/annurev-arplant-080620-104948 (*Corresponding author)
20. Witek K, Lin X, Karki HS, Jupe F, Witek AI, Steuernagel B, Stam R, van Oosterhout C, Fairhead S, Heal R, Cocker JM, Barrett W, Wu CH, Adachi H, Song T, Kamoun S, Vleeshouwers VGAA, Tomlinson L, Wulff BBH, Jones JDG. 2021. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants https://doi.org/10.1038/s41477-021-00854-9
19. Wu CH and Kamoun S. 2021. Tomato Prf requires NLR helpers NRC2 and NRC3 to confer resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato. Acta Hortic. 1316: 61-66 doi.org/10.17660/ActaHortic.2021.1316.9 bioRxiv doi.org/10.1101/595744
18. Gao C, Xu H, Huang J, Sun B, Zhang F, Savage Z, Duggan C, Yan T, Wu CH, Wang Y, Vleeshouwers VGAA, Kamoun S, Bozkurt TO, Dong S. 2020. Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. PNAS 117:9613-9620. https://doi.org/10.1073/pnas.2002759117
17. Wu CH#, Adachi H#, De la Concepcion JC#, Castells-Graells R, Nekrasov V, Kamoun S. 2020. NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. Plant Physiology 182: 455–459. doi.org/10.1104/pp.19.00859 (#Equal contribution)
16. Frantzeskakis L, Pietro A Di, Rep M, Schirawski J, Wu CH, and Panstruga R. 2020. Rapid evolution in plant–microbe interactions–a molecular genomics perspective. New Phytologist 225 :1134-1142. doi.org/10.1111/nph.15966
15. Adachi H, Contreras M, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt T, Maqbool A, Win J, Kamoun S. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8: e49956. doi: 10.7554/eLife.49956
14. Jose S, Wu CH, and Kamoun S. 2019. Overcoming plant blindness in science, education, and society. Plants, People, Planet.
13. Derevnina L, Kamoun S* and Wu CH*. 2019.Dude, where is my mutant? Nicotiana benthamianameets forward genetics. New Phytologist 221:607–610.doi.org/10.1111/nph.15521
12. Wu CH, Derevnina L, and Kamoun S. 2018. Receptor networks underpin plant immunity. Science 360:1300-1301. doi: 10.1126/science.aat2623.
11. Upson JL, Zess EK, Bialas A, Wu CH, and Kamoun S. 2018. The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. Current Opinion in Plant Biology 44:108-116. doi.org/10.1016/j.pbi.2018.03.003.
10. Bialas A, Zess EK, DelaConcepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu CH, Langner T, Maqbool A, Varden FA, Derevnina L, Belhaj K, Fujisaki K, Saitoh H, Terauchi R, Banfield MJ, and Kamoun S. 2017. Lessons in effector and NLR biology of plant-microbe systems. Mol. Plant-MicrobeInteract. 31:34-45. https://doi.org/10.1094/MPMI-08-17-0196-FI.
9. Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, and Kamoun S. 2017. NLR network mediates immunity to diverse plant pathogens. PNAS 114:8113-8118. doi: 10.1073/pnas.1702041114.
· Featured as Spotlight in Trends in Plant Science (Dec 2017)
· Recommended by Faculty of 1000
8. Derevnina L, Dagdas YF, Dela Concepcion JC, Bialas A, Kellner R, Petre B, Domazakis E, DuJ, Wu CH, Lin X, Aguilera-Galvez C, Cruz-Mireles N, Vleeshouwers VG, and Kamoun S. 2016. Nine things to know about elicitins. NewPhytologist 212:888-895. doi: 10.1111/nph.14137.
7. Wu CH, Belhaj K, Bozkurt TO, Birk SM, and Kamoun S. 2016. The NLR helper proteins NRC2a/b and NRC3 but not NRC1 are required for Pto-mediated immunity in Nicotiana benthamiana. New Phytologist 209:1344-52. doi: 10.1111/nph.13764.
6. Peng KC, Wang CW, Wu CH, Huang CT, and Liou RF. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant-MicrobeInteract.28:913-926. doi: 10.1094/MPMI-12-14- 0405-R.
5. Wu CH, Krasileva KV, Banfield MJ, Terauchi R, and Kamoun S. 2015. The sensor domains of plant NLR proteins: more than decoys? Frontiers in Plant Science 6:134. doi: 10.3389/fpls.2015.00134.
4. Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu CH, Cano LM, and Kamoun S. 2015. Rerouting of plant late endocytic trafficking towards a pathogen interface. Traffic16:204-226. doi: 10.1111/tra.12245.
3. Wu CH, Lee SC, and Wang CW. 2011. Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. Journal of Cell Biology193: 521-535. doi: 10.1083/jcb.201006023.
· Featured as Research Highlight in Nature Reviews Microbiology(May 2011)
2. Lee SC, Wu CH, and Wang CW. 2010. Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmicreticulum. Traffic11: 912-930. doi: 10.1111/j.1600-0854.2010.01064.x.
1. Wu CH, Yan HZ,Liu LF, and Liou RF. 2008. Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol. Plant-MicrobeInteract.21: 480-489. doi: 10.1094/MPMI-21-4-0480.