活化的 Panx1 會將細胞內訊息因子的釋出,進而調控鄰近組織的微環境。因此 Panx1 的活性與許多病理機制有關,包括癲癇、高血壓、中風、氣喘及不孕症等等。然而目前針對 Panx1 通道的藥物並不具有專一性,部分藥物甚至具有毒性,並不適合運用在疾病治療。因此我們一方面將利用先前發現的前導藥物 (例如,trovafloxacin 與 spironolactone) 進行化學修飾,以進一步開發對 Panx1 具有專一性且低細胞毒性的小分子抑制劑。另外,在特定免疫相關疾病中,活化 Panx1 被認為可減緩疾病症狀 (例如,氣喘、類風溼性關節炎、器官移植排斥等)。為此,我們利用已建立之流式細胞分析平台,篩選出新型Panx1 活化劑,並檢測這些 Panx1 活化/抑制劑的專一性、毒性以及運用在基礎研究和疾病治療之潛力。
Activated Panx1 can mediate the release of intracellular signaling molecules, thereby modulating the microenvironment of surrounding tissues. Therefore, Panx1 activity has been associated with various pathological mechanisms, including epilepsy, hypertension, stroke, asthma, and infertility. However, current drugs targeting Panx1 channels lack specificity, and some even exhibit toxicity, making them unsuitable for therapeutic use. To address this, we aim to chemically modify previously identified lead compounds (e.g., trovafloxacin and spironolactone) to develop Panx1-specific small-molecule inhibitors with improved potency and lowered cytotoxicity. Meanwhile, in certain immune-related diseases, activated Panx1 has been proposed, on the other hand, to alleviate symptoms (e.g., asthma, rheumatoid arthritis, and organ transplant rejection). To explore this potential, we utilize our established flow cytometry platform to screen novel Panx1 activators and evaluate their specificity, toxicity, and potential applications in basic research and disease treatment.
相關實驗技術:細胞培養、流式細胞儀、蛋白質純化、RT-qPCR、電生理紀錄、動物實驗
Panx1 通道被許多細胞膜上受體所調控。我們之前發現 α1 腎上腺素受體可活化血管平滑肌上的 Panx1 通道,而由活化後的 Panx1 通道所釋出的ATP 則會促進血管收縮進而調控血壓。由於我們目前尚不清楚 α1 腎上腺素受體如何活化 Panx1 通道,所以我們的研究將探討 α1 腎上腺素受體利用哪些細胞內信息傳遞分子來活化 Panx1 通道,並了解 Panx1 蛋白質分子上的哪些轉譯後修飾決定了 Panx1 離子通道的活性。
Panx1 channels are regulated by various membrane receptors. Our previous studies reported that α1-adrenergic receptors activate Panx1 channels in vascular smooth muscle, leading to ATP release, which promotes vasoconstriction and regulates blood pressure. However, the mechanism by which α1-adrenergic receptors activate Panx1 channels remains to be explored. Our research aims to identify the intracellular signaling molecules involved in this activation and determine which post-translational modifications of Panx1 modulate its channel activity.
相關實驗技術:細胞工程、西方墨點法、免疫螢光染色、質體建構、電生理紀錄、動物實驗
細胞會利用電流與各式各樣的小分子代謝物與其他細胞溝通,讓不同的細胞或組織一致地行動或讓彼此分工合作。因此,細胞與細胞間的信息傳遞調控著所有的正常生理現象,而這些細胞間信息傳遞的失調將會導致各種的病理狀況的發生或惡化。Panx1 離子通道位於細胞膜上,它廣泛地分布在脊椎動物的各種細胞與組織中。在不同的生理狀況下,Panx1 通道會被各種不同的分子機制活化 (如圖)。活化後的Panx1 通道除了可讓鉀、鈉、鈣、氯等離子通過細胞膜形成電流外,還可讓許多小分子代謝物 (例如: ATP及其他核甘酸) 由細胞中流出,進而影響鄰近的細胞。因此,Panx1通道在細胞間信息傳遞中扮演著重要的角色。目前已知 Panx1 通道的活性與血管收縮、發炎反應、葡萄糖攝取、癲癇、癌細胞轉移、高血壓、糖尿病、及慢性神經病變性疼痛有關。我們目前研究的主要目標將是了解 Panx1 通道在心血管及免疫系統中所扮演的角色,並將探討 Panx1 通道的活性在從生理過渡到病理狀況期間的改變。
Cells communicate with one another using electrical currents and a variety of small metabolites, enabling coordinated actions among different cells and tissues. This intercellular communication governs daily physiological processes, while its disruption can lead to or worsen pathological conditions. Panx1 channels, located on the cell membrane, are widely expressed across various vertebrate cells and tissues. These channels can be activated through diverse molecular mechanisms under different physiological conditions (as shown in the figure). Once activated, Panx1 channels allow not only inorganic ions, such as potassium, sodium, calcium, and chloride, but also organic metabolites, including ATP and glutamate, move across plasma membrane as crucial cell-to-cell signals. Previous studies have linked Panx1 activity to vascular constriction, inflammation, glucose uptake, epilepsy, cancer metastasis, hypertension, diabetes, and chronic neuropathic pain. Our research focuses on uncovering the role of Panx1 channels in the central nervous, cardiovascular and immune systems and investigating how their activity changes during the transition from physiological to pathological states.
相關實驗技術:細胞培養、西方墨點轉漬、RT-qPCR、組織免疫染色、動物實驗