29. Reactive high-spin iron(IV) oxo sites through dioxygen activation in a metal–organic framework
Hou, K.; Börgel, J.; Jiang, H. Z. H.; Kwon, H.; Zhuang, H.; Rohde, R. C.; Taylor, J. W. Chakarawet, K.; SantaLucia, D. J.; Dun, C.; Paley, M. V.; Turkiewicz, A. B.; Park, J. G.; Mao, H.; Zhu, Z.; Alp, E. E.; Zhao, J.; Hu, M. Y.; Lavina, B.; Lv, X.; Oktawiec, J.; Pantazis, D. A.; Vandone, M.; Colombo, V.; Bill, E.; Urban, J. J.; Britt, R. D.; Grandjean, F.; Long, G. J.; Neese, F.; Reimer, J. A.; Long, J. R.
Science 2023, 382, 547-553.
28. Copper(II) affects the activity of proinsulin C-peptide by forming ternary complexes with serum albumin
San Juan, J. A.; Chakarawet, K.; He, Z.; Harder, N. H. O.; Stevenson, M. J.; Wang, L.-P.; Britt, R. D.; Heffern, M. C.
J. Am. Chem. Soc. 2023, 145, 16726.
27. Structural evolution of iron-loaded metal–organic framework catalysts for continuous gas-phase oxidation of methane to methanol
Rungtaweevoranit, B.; Abdel-Mageed, A. M.; Khemthong, P.; Eaimsumang, S.; Chakarawet, K.; Butburee, T.; Kunkel, B.; Wohlrab, S.; Chainok, K.; Phanthasri, J.; Wannapaiboon, S.; Youngjan, S.; Seehamongkol, T.; Impeng, S.; Faungnawakij, K.
ACS Appl. Mater. Interfaces 2023, 15, 26700.
26. A trinuclear gadolinium cluster with a three-center one-electron bond and an S = 11 ground state
McClain, K.; Kwon, H.; Chakarawet, K.; Nabi, R.; Kragskow, J.; Chilton, N.; Britt, R. D.; Long, J. R.; Harvey, B.
J. Am. Chem. Soc. 2023, 145, 8996.
25. Mutation of a metal ligand stabilizes the high-spin form of the S2 state in the O2-producing Mn4CaO5 cluster of photosystem II
Chakarawet, K.; Debus, R. J.; Britt, R. D.
Photosynth. Res. 2023, 156, 309.
24. Electron density analysis of metal–metal bonding in a Ni4 cluster featuring ferromagnetic exchange
Leiszner, S. S.; Chakarawet, K.; Long, J. R.; Nishibori, E.; Sugimoto, K.; Platts, J. A.; Overgaard, J.
Inorg. Chem. 2023, 62, 192.
23. Tryptophan can promote oxygen reduction to water in a biosynthetic model of heme copper oxidase
Ledray, A. P.; Dwaraknath, S.; Chakarawet, K.; Sponholtz, M. R.; Merchen, C.; Van Stappen, C.; Rao, G.; Britt, R. D.; Lu, Y.
Biochemistry 2023, 62, 388.
22. Synthesis, physicochemical characterization, and catalytic evaluation of Fe3+-containing SSZ-70 zeolite
Lew, C. M.; Chen, C.-Y.; Long, G. J.; Grandjean, F.; Ichimura, A. S.; Xie, D.; Grosso-Giodano, N. A.; Chakarawet, K.; Lacheen, H. S.; Jensen, K. O.; Martinez, A.; Katz, A.; Zhan, B.-Z.; Zones, S. I.
ACS Catal. 2022,12, 6464.
21. Interlayer structure manipulation of iron oxychloride by potassium cation intercalation to steer H2O2 activation pathway
Wang, J.; Hou, K.-P.; Wen, Y.; Liu, H.; Wang, J.; Chakarawet, K.; Gong, M.; Yang, X.
J. Am. Chem. Soc. 2022. 144, 4294.
20. Effect of spin–orbit coupling on phonon-mediated magnetic relaxation in a series of zero-valent vanadium, niobium, and tantalum isocyanide complexes
Chakarawet, K.; Atanasov, M.; Ellis, J. E.; Lukens, W. W.; Young, V. G.; Chatterjee, R.; Neese, F.; Long, J. R.
Inorg. Chem. 2021, 60, 18553.
19. A uranium(II) arene complex that acts as a uranium(I) synthon
Straub, M. D.; Ouellette, E. T.; Boreen, M. A.; Britt, R. D.; Chakarawet, K.; Douair, I.; Gould, C. A.; Maron, L.; Del Rosal, I.; Villarreal, D.; Minasian, S. G.; Arnold, J.
J. Am. Chem. Soc. 2021, 143, 19748.
18. Spectroscopic, magnetic, and computational investigations on a series of rhenium(III) cyclopentadienide β-diketiminate halide and pseudohalide complexes
Ouellette, E. T.; Estrada, J. I. A.; Lussier, D. J.; Chakarawet, K.; Lohrey, T. D.; Maron, L.; Bergman, R. G.; Arnold, J.
Organometallics 2021, 41, 3128.
17. Strong electronic and magnetic coupling in M4 (M = Ni, Cu) clusters via direct orbital interactions between low-coordinate metal centers
Chakarawet, K.; Atanasov, M.; Marbey, J.; Bunting, P.; Neese, F.; Hill, S.; Long, J. R.
J. Am. Chem. Soc. 2020, 142, 19161.
16. Semiquinone radical-bridged M2 (M = Fe, Co, Ni) complexes with strong magnetic exchange giving rise to slow magnetic relaxation
Chakarawet, K.; Harris, T. D.; Long, J. R.
Chem. Sci. 2020, 11, 8196.
15. Metal–ligand cooperativity via exchange coupling promotes iron-catalyzed electrochemical CO2 reduction at low overpotentials
Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J.
J. Am. Chem. Soc. 2020, 142, 20489.
14. Substituent effects on exchange coupling and magnetic relaxation in 2,2ˊ-bipyrimidine radical-bridged dilanthanide complexes
Gould, C. A.; Mu, E.; Vieru, V.; Darago, L. E.; Chakarawet, K.; Gonzalez, M. I.; Demir, S.; Long, J. R.
J. Am. Chem. Soc. 2020, 142, 21197.
13. Bimetallic mechanism for alkyne cyclotrimerization with a two-coordinate Fe precatalyst
Witzke, R. J.; Hait, D.; Chakarawet, K.; Head-Gordon, M.; Tilley, T. D.
ACS Catal. 2020, 10, 7800.
12. Biomimetic O2 adsorption in an iron metal–organic framework for air separation
Reed, D. A.; Xiao, D. J.; Jiang, H. Z. H.; Chakarawet, K.; Oktawiec, J.; Long, J. R.
Chem. Sci. 2020, 11, 1698.
11. Selective, high-temperature O2 adsorption in chemically reduced, redox-active iron-pyrazolate metal-organic frameworks
Jaffe, A.; Ziebel, M.; Halat, D. M.; Biggins, N.; Murphy, R. Chakarawet, K.; Reimer, J. A.; Long, J. R.
J. Am. Chem. Soc. 2020, 142, 14627.
10. Iron detection and remediation with a functionalized porous polymer applied to environmental water samples
Lee, S.; Uliana, A.; Taylor, M. K.; Chakarawet, K.; Bandaru, S. R. S.; Gul, S. Xu, J. Ackerman, C. M.; Chatterjee, R.; Furukawa, J. Reimer, J. A.; Yano, J.; Gadgil, A.; Long, G. J.; Grandjean, F.; Long, J. R.; Chang, C. J.
Chem. Sci. 2019, 10, 6651.
9. Large anisotropy barrier in a tetranuclear single-molecule magnet featuring low-coordinate cobalt centers
Chakarawet, K.; Bunting, P.; Long, J. R.
J. Am. Chem. Soc. 2018, 140, 2058.
8. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn)
Shi, T.; Xiao, P.; Kwon, D.-H.; Gautam, G. S.; Chakarawet, K.; Kim, H.; Bo, S.-H.; Ceder, G.
Chem. Mater. 2018, 30, 8811.
7. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets
McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S.; Groshens, T. J.; Long, J. R.
Chem. Sci. 2018, 9, 8492.
6. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1,2,3-triazolate)2(BF4)x
Park, J. G.; Aubrey, M. L.; Oktawiec, J.; Chakarawet, K.; Darago, L. E.; Grandjean, F.; Long, G. J.; Long, J. R.
J. Am. Chem. Soc. 2018, 140, 8526.
5. A terminal fluoride ligand generates highly axial magnetic anisotropy in dysprosium complexes
Norel, L.; Darago, L. E.; Le Guennic, B.; Chakarawet, K.; Gonzalez, M. I.; Olshansky, J. H.; Rigaut, S.; Long, J. R.
Angew. Chem. Int. Ed. 2018, 57, 1933.
4. Ta(CNDipp)6: an isocyanide analogue of hexacarbonyltantalum(0)
Chakarawet, K.; Davis-Gilbert, Z. W.; Harstad, S. R.; Young, Jr., V. G.; Long, J. R.; Ellis, J. E.
Angew. Chem. Int. Ed. 2017, 56, 10577.
3. Crystalline metaphosphate acid salts: synthesis in organic media, structures, hydrogen-bonding capability, and implication of superacidity
Chakarawet, K.; Knopf, I.; Nava, M.; Jiang, Y.; Stauber, J. M.; Cummins, C. C.
Inorg. Chem. 2016, 55, 6178.
2. Dihydrogen tetrametaphosphate, [P4O12H2]2–: synthesis, solubilization in organic media, preparation of its anhydride [P4O11]2– and acidic methyl ester, and conversion to tetrametaphosphate metal complexes via protonolysis
Jiang, Y.; Chakarawet, K.; Kohout, A. L.; Nava, M.; Marino, M.; Cummins, C. C.
J. Am. Chem. Soc. 2014, 136, 11894.
1. Facile synthesis of mononuclear early transition-metal complexes of κ3 cyclo-tetrametaphosphate ([P4O12]4–) and cyclo-trimetaphosphate ([P3O9]3–)
Manna, C. M.; Nassar, M. Y. Tofan, D.; Chakarawet, K.; Cummins, C. C.
Dalton Trans. 2014, 43, 1509.