The Annual Atlantic Causal Inference Conference (ACIC) Data Challenge provides an opportunity to compare causal inference methodologies across a variety of data generating processes (DGP)
此竞赛尚未完善,开源解决方案参考 Vincent Dorie(2018)。
Q1. How to evaluation the performance in AICC Data Challenge?
论文 Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition 总结了该竞赛的评估方法,给出和评价了相关优胜结果。
Collecting causality datasets. Ruocheng Guo(2019) 给出了因果数据集的分类及其对应的方法. 本项目的目的是 An index of datasets that can be used for learning causality and jupyter-notebook example for them.
关注深度学习与因果推断的结合.
Pyro + Handbook of graphical models 的学习项目。通过这个项目,从理论到实践掌握概率图模型。
"""
Copyright (C) 2018 Heyang Gong, USTC
perfect match 的详细讲解 pytorch, python3 版本.
"""
一个有关因果推断模拟的标准化项目.