We will now prove that a certain limit exists, namely the limit of f (x) = x as x approaches any value c. (That f(x) also approaches c should be obvious.)
THEOREM. If f (x) = x, then for any value c that we might name:
For, if a sequence of values of the variable x approaches c as a limit (Definition 2.1), then a sequence of values of the function f(x) = x will also approach c as a limit (Definition 2.2).
For example,
Theorems on limits
To help us calculate limits, it is possible to prove the following.
Let f and g be functions of a variable x. Then, if the following limits exist:
In other words:
1) The limit of a sum is equal to the sum of the limits.
2) The limit of a product is equal to the product of the limits.
3) The limit of a quotient is equal to the quotient of the limits,
3) provided the limit of the denominator is not 0.
Also, if c does not depend on x -- if c is a constant -- then
It should be clear from this example that to evaluate the limit of any power of x as x approaches any value, simply evaluate the power at that value.