In this section we’re going to make sure that you’re familiar with functions and function notation. Both will appear in almost every section in a Calculus class so you will need to be able to deal with them.
First, what exactly is a function? The simplest definition is an equation will be a function if, for any xx in the domain of the equation (the domain is all the xx’s that can be plugged into the equation), the equation will yield exactly one value of yy when we evaluate the equation at a specific xx.
This is usually easier to understand with an example.
Example 1 – Determine if each of the following are functions.
1. y = x2 + 1
Solution:
This first one is a function. Given an x, there is only one way to square it and then add 1 to the result. So, no matter what value of x you put into the equation, there is only one possible value of y when we evaluate the equation at that value of x.
2. y2 = x+1
The only difference between this equation and the first is that we moved the exponent off the xx and onto the yy. This small change is all that is required, in this case, to change the equation from a function to something that isn’t a function.
To see that this isn’t a function is fairly simple. Choose a value of x, say x=3 and plug this into the equation.
y2 = 3 + 1 = 4
Now, there are two possible values of y that we could use here. We could use y=2 or y=−2. Since there are two possible values of y that we get from a single x this equation isn’t a function.
Note that this only needs to be the case for a single value of x to make an equation not be a function. For instance, we could have used x=−1 and in this case, we would get a single y (y=0). However, because of what happens at x=3 this equation will not be a function.