Integrins are cell surface receptors playing essential roles in many physiological and pathological events. The relevance of RGD-dependent αVβ3, αVβ5, αVβ6 and α5β1 integrins during tumour angiogenesis and tumour development is well established. This is also reflected by differential integrin expression patterns in normal versus tumour tissue as well as in different stages of tumour progression.
In recent years our efforts in the area of specific integrin ligands led to the development of a new series of g-aminocyclopentanecarboxylic acid (Acpca)-based or g-aminoproline (Amp)-based RGD-cyclotetrapeptides which turned out to be very potent αVβ3, αVβ5 and α5β1 integrin binders with IC50 binding affinities in the nanomolar range. In particular, the covalent conjugation of our AmpRGD ligands with cytotoxic agents as well as their embodiment in liposomal nanoparticles were accomplished and biological properties of these bioconjugates were evaluated with encouraging results.
Focus of this research line is on the design, synthesis, and characterisation of novel and modulable integrin-targeted RGD-based pseudopeptide ligands and their conjugates for biomedical applications in the field of target-directed anti-cancer and anti-fibrosis therapy.
More recently, our research interest moved to the α4β1 integrin subfamily, which covers a prime role among the therapeutic targets of interest in fighting multiple sclerosis. The aim of our project is to design and synthesize a new class of small-molecule peptidomimetics able to effectively bind to the α4β1 receptor in order to interfere with the migration of lymphocytes T across the BBB with subsequent demyelinating effect.
Representation of the AmpLRGDL ligand docked into the binding region of αvβ6 integrin.
Main publications and patents about this subject:
Andreucci L.; Bugatti K.; Peppicelli S.; Ruzzolini J.; Lulli M.; Calorini L.; Battistini L.; Zanardi F.; Sartori A. and Bianchini F. Nintedanib-αVβ6 Integrin Ligand Conjugates ReduceTGFβ-Induced EMT in Human Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2023, 24(2), 1475; https://doi.org/10.3390/ijms24021475
Bugatti, K.; Sartori, A.; Battistini, L.; Ruzzolini, J.; Nediani, C.; Curti, C.; Bianchini, F.; and Zanardi, F. Nintedanib-αVβ3 Integrin Ligand Dual-Targeting Conjugates towards Precision Treatment of Melanoma. EurJOC, 2022, e202200765, https://doi.org/10.1002/ejoc.202200765
Bugatti, K.; Andreucci, E.; Monaco, N.; Battistini, L.; Peppicelli, S.; Ruzzolini, J.; Curti, C.; Zanardi, F.; Bianchini, F. and Sartori, A. Nintedanib-Containing Dual Conjugates Targeting αVβ6 Integrin and Tyrosine Kinase Receptors as Potential Antifibrotic Agents. ACS Omega, 2022, 7, 21, 17658–17669, https://doi.org/10.1021/acsomega.2c00535
Sartori, A.; Bugatti, K.; Portioli, E.; Baiula, M.; Casamassima, I.; Bruno, A.; Bianchini, F.; Curti, C.; Zanardi, F. and Battistini, L. New 4-Aminoproline-Based Small Molecule Cyclopeptidomimetics as Potential Modulators of α4β1 Integrin. Molecules, 2021, 26(19), 6066. 10.3390/molecules26196066
Battistini, L.; Bugatti, K.; Sartori, A.; Curti, C.; Zanardi, F. RGD Peptide‐Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. Eur. J. Org. Chem. 2021, 2506 – 2528. doi.org/10.1002/ejoc.202100240
Bugatti, K.; Bruno, A.; Arosio, D.; Sartori, A.; Curti, C.; Augustijn, L.; Zanardi, F.; Battistini, L. Shifting Towards αVβ6 Integrin Ligands Using Novel Aminoproline-Based Cyclic Peptidomimetics. Chem. Eur. J. 2020, 26, 13468-13475. doi.org/10.1002/chem.202002554
Sartori, A.; Corno, C.; De Cesare, M.; Scanziani, E.; Minoli, L.; Battistini, L.; Zanardi, F.; Perego, P. Efficacy of a Selective Binder of αVβ3 Integrin Linked to the Tyrosine Kinase Inhibitor Sunitinib in Ovarian Carcinoma Preclinical Models. Cancers, 2019, 11, 531. doi.org/10.3390/cancers11040531
Bianchini, F.; De Santis, A.; Portioli, E.; Russo Krauss, I.; Battistini, L.; Curti, C.; Peppicelli, S.; Calori, L.; D'Errico, G.; Zanardi, F.; Sartori, A.; Integrin-targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools, 2019, 18, 135-145. DOI: 10.1016/j.nano.2019.02.015
Bianchini, F.; Portioli, E.; Ferlenghi, F.; Vacondio, F.; Andreucci, E.; Biagioni, A.; Ruzzolini, J.; Peppicelli, S.; Lulli, M.; Calorini, L. Battistini, L.; Zanardi, F.; Sartori, A.; Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Lett. 2019, 446, 25-37. DOI: 10.1016/j.canlet.2018.12.021
Maggi, V.; Bianchini, F.; Portioli, E.; Peppicelli, S.; Lulli, M.; Bani, D.; Del Sole, R.; Zanardi, F.; Sartori, A.; Fiammengo, R. Gold Nanoparticles Functionalized with RGD-Semipeptides: A Simple yet Highly Effective Targeting System for αVβ3 Integrins. Chem. Eur. J. 2018, 24, 12093-12100. DOI: 10.1002/chem.201801823
Sartori, A.; Portioli, E.; Battistini, L.; Calorini, L.; Pupi, A.; Vacondio, F.; Arosio, D.; Bianchini, F.; Zanardi, F. Synthesis of Novel c(AmpRGD)-Sunitinib Dual Conjugates as Molecular Tools Targeting the αVβ3 Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. J. Med. Chem. 2017, 70(1), 248-262. doi: 10.1021/acs.jmedchem.6b01266
Battistini, L.; Burreddu, P.; Sartori, A.; Arosio, D.; Manzoni, L.; Paduano, L.; D’Errico, G.; Sala, R.; Reia, L.; Bonomini, S.; Rassu, G.; Zanardi, F. Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Mol. Pharm. 2014, 11, 2280-2293. DOI: 10.1021/mp400718j
Pilkington-Miksa, M.; Arosio, D.; Battistini, L.; Belvisi, L.; De Matteo, M.; Vasile, F.; Burreddu, P.; Carta, P.; Rassu, G.; Perego, P.; Carenini, N.; Zunino, F.; De Cesare, M.; Castiglioni, V.; Scanziani, E.; Scolastico, C.; Casiraghi, G.; Zanardi, F.; Manzoni L. Design, Synthesis and Biological Evaluation of Novel cRGD-Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconj. Chem. 2012, 23, 1610-1622. DOI: 10.1021/bc300164t
Auzzas, L.; Zanardi, F.; Battistini, L.; Burreddu, P.; Carta, P.; Rassu, G.;Curti, C.; Casiraghi, G. Targeting αVβ3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides. Curr. Med. Chem. 2010, 17, 1255-1299. DOI 10.2174/092986710790936301
Battistini, L.; Burreddu, P.; Carta, P.; Rassu, G.; Auzzas, L.; Curti, C.; Zanardi, F.; Manzoni, L.; Araldi, E. M. V.; Scolastico, C.; Casiraghi, G. 4-Aminoproline-Based Arginine-Glycine-Aspartate Integrin Binders with Exposed Ligation Points: Practical in-Solution Synthesis, Conjugation and Binding Affinity Evaluation. Org. Biomol. Chem. 2009, 7, 4924-4935. doi.org/10.1039/B914836A
Zanardi, F.; Burreddu, P.; Rassu, G.; Auzzas, L.; Battistini, L.; Curti, C.; Sartori, A.; Nicastro, G.; Menchi, G.; Cini, N.; Bottoncetti, A.; Raspanti, S.; Casiraghi, G. Discovery of Subnanomolar Arginine-Glycine-Aspartate-Based αVβ3/αVβ5 Integrin Binders Embedding 4-Aminoproline Residues. J. Med. Chem. 2008, 51, 1771-1782. doi.org/10.1021/jm701214z
Casiraghi, G.; Scolastico, C.; Zanardi, F.; Battistini, L.; Curti, C.; Rassu, G.; Auzzas, L.; Burreddu, P.; Manzoni, L. P. Integrin Targeted Cyclopeptide Ligands, Their Preparation and Use. EP N° 07003540.7, 21.02.2007; PCT Appl., N° PCT/IB2008/000366, 19.02.2008; USA Application Serial N° 12/527,603.
Casiraghi, G.; Rassu, G.; Auzzas, L.; Battistini, L.; Zanardi, F.; Curti, C.; Nicastro, G.; Belvisi, L.; Castorina, M.; Giannini, G.; Pisano, C. Ciclopeptidi Ibridi Contenenti Amminoacidi Cicloalcanici, e Loro Preparazione ed Uso. Ital. Pat. Appl. RE2005A00088, 21.07.05.
Casiraghi, G.; Rassu, G.; Auzzas, L.; Burreddu, P.; Gaetani, E.; Battistini, L.; Zanardi, F.; Curti, C.; Nicastro, G.; Belvisi, L.; Motto, I.; Castorina, M.; Giannini, G.; Pisano, C. Grafting Aminocyclopentane Carboxylic Acids onto the RGD Tripeptide Sequence Generates Low Nanomolar αVβ3/αVβ5 Integrin Dual Binders. J. Med. Chem. 2005, 48, 7675-7687.