鋰離子電池之技術創新
Lithium-ion batteries (LIBs), which show excellent power density and energy capacity, suggested as a promising candidate for using in large numbers in the power grid and electric vehicles. Our group study high-performance, low-cost, and non-toxic oxide materials utilizing material science technologies. We conducted detailed studies on voltage hysteresis and electrolyte effect in oxide anodes. The voltage hysteresis was analyzed by electrochemical analysis and molecular dynamic simulation on LIB half-cells using Mn3O4 as an anode material. It was observed that the voltage hysteresis could be resulted from reaction and intrinsic overpotentials, both were related to the diffusion behaviors.
Publications:
1. Yi-Ting Lee, Chia-Tung Kuo, and Tri-RungYew*, The Investigation on the Voltage Hysteresis of Mn3O4 for Lithium Ion Battery Applications, ACS Applied Materials & Interfaces, 2021, 13, 1, 570–579, 2019 SCI Impact Factor: 8.758.
2. Yun-Chen Tsai, Chia-Tung Kuo, Shih-Fu Liu, Yi-Ting Lee and Tri- Rung Yew*, The Investigation of Different Electrolytes on Lithium- Ion Batteries With MnO2 Anodes, The Journal of Physical Chemistry C, 2021, 125, 2, 1221–1233, 2019 SCI Impact Factor: 4.189.
氧化物半導體及透明導電膜之技術創新
Due to the growing demand for energy, there is an urgent need for sustainable energy technologies. Among the sources of renewable energy, solar energy is considered the most promising. In our solar cell group, we are developing the low cost and environmentally friendly solar cells. We work on three topics: (1) solid-state dye-sensitized solar cell (SS-DSSC), (2) oxide-based solar cell and (3) amorphous–silicon solar cell. Our research of solid-state dye-sensitized solar cell is focus on developing the new p-type materials as the hole conductor. For the research of oxide-based solar cells and amorphous–silicon solar cells, we try to find an easier process to reduce the cost and increase the power conversion efficiency.
Publications:
H. Y. Chen, H. C. Su, C. H. Chen, K. L. Liu, C. M. Tsai, S. J. Yen, and T. R. Yew*, Indium-doped Molybdenum Oxide as a New P-type Transparent Conductive Oxide, J. of Materials Chemistry, 21 (15), 5745-5752 (2011), SCI Impact Factor: 6.626
H. Y. Shiu, C. M. Tsai, S. Y. Chen, and T. R. Yew*, Solution-processed All-oxide Nanostructures for Heterojunction Solar Cells, submitted to J. of Materials Chemistry, 21, 17646-17650 (2011), 2013 SCI-IF: 6.626
C. Y. Lin, C. Y. Wang, M. H. Hung, T. L. Liu and T. R. Yew*, Low Resistivity Tin-Doped Copper Nanowires, IEEE Electron Device Letters, VOL. 34, NO. 4, APRIL 2013, 2015 SCI-IF: 2.528.
C. T. Ho, T. W. Weng, C. Y. Wang, S. J. Yen, and T. R. Yew*, Tunable Band Gaps of Co3-xCuxO4 Nanorods with Various Cu Doping, RSC Adv., 2014, 4, 20053, SCI-IF: 3.708.
Yu ming Hsu, Chiuyen Wang, Pin Chang, and Tri rung Yew*, Non-stoichiometric W18O49–xSx nanowires for widespectrum photo sensors with high internal gain, Nano Scale, 18 Nov 2014, SCI-IF: 6.739.
K. W. Lan, Y. J. Hong, P. Chang, and T. R. Yew*, Cobalt Tungsten Oxide Thin Films Prepared by RF-Sputter for Photosensor, Adv. Mater. Interfaces, 2017, 1601165-1601171, 2016 SCI IF: 3.365
Y. J. Hong, T. R. Yew*, Self-assembled Tin Dioxide for Forming-free Resistive Random-access Memory Application, Jpn. J. Appl. Phys. 55, 060301 (2016), 2015 SCI-IF:1.122
L. L. Kuo, K. W. Lan, Y. C. Hsiao, Y. J. Hung, C. M. Tsai, C. C. Hu, and T. R. Yew*, Cu0.78Sn0.12Mn0.1Ox Thin Films as a Photocatalytic Material under Visible Light, ChemistrySelect, 4(33):9844-9848 (2019) . SCI-IF: 1.505
P. H. Chung, C. T. Kuo, T. H. Wang, Y. Y. Lu, C. I. Liu, and T. R. Yew*, A Sensitive Visible Light Photodetector Using Cobalt-doped Zinc Ferrite Oxide Thin Films, ACS Applied Materials & Interfaces, 2021, 13, 5, 6411–6420,2020 SCI-IF: 9.229
C. T. Kuo, Y. Y. Chu, H. Y. Chen, and T. R. Yew*, Tin-Manganese-Nickel Oxide Thin Films Prepared by Thermal Evaporation for Photosensor Applications, Materials Science and Engineering: B, 2021, 268C, 115126, 1–8. 2020SCI-IF: 4.051
T. H. Wang, C. T. Kuo, P. H. Chung, Y. Y. Lu, C. I. Liu, and T. R. Yew*, Novel Cu-Mg-Ni-Zn-Mn Oxide Thin Film Electrodes for NIR Photodetector Applications, Journal of Materials Chemistry C, 2021, 9, 14, 4961-4970, 2020 SCI-IF: 7.393
C. I. Liu, P. H. Chung, Y. Y. Lu, C.T. Kuo, T. H. Wang, and T. R. Yew*, The Mechanism and Equivalent Circuit Model of Multi-Element Metal Oxide Thin-Film Photodetectors, ACS Applied Materials & Interfaces, 2021, 13, 5, 6411–6420, 2020 SCI-IF: 4.16
Y. M. Lee, Y. Y. Lu, C. T. Fu, C. T. Kuo, L. C. Hou, Y. H. Chuang, P. H. Chung, T. H. Wang, C.I. Liu, T. R.Yew *, Manganese Copper Ferrite Thin Films for Visible-NIR Region Photodetector Applications, Physica Status Solidi (RRL) - Rapid Research Letters, Published online June 01, 2022 ,2020 SCI-IF: 2.821
C. T. Fu, C. T. Kuo, C. C. Chi, L. C. Hou, C. I. Liu, S. C. Chang, Y. M. Lee, Y. H. Chuang, T. R.Yew *, Highly Sensitive Copper-Doped Zinc Stannate Thin Films for Ultraviolet–Visible Light Photodetector Applications, Journal of Electronic Materials, June 13, 2022, 2020 SCI-IF: 1.938
活體生物顯像之技術創新
Bio-imaging research in situ and high-resolution imaging of biology in native status is desired worldwide. We created a novel microchip (K-kit) for in situ high-resolution imaging of living organisms in an aqueous condition using transmission electron microscope (TEM) without equipment modification. As well, situ monitoring of biological processes was demonstrated using TEM combined K-kit.
Publications:
K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, P. Chang, L. Hsu and T. R. Yew*, Novel Microchip for In-situ Imaging of Living Organisms and Bio-reactions in Aqueous Condition, 2008, Lab on a Chip, 8, 1915-1921, SCI-IF: 5.670.
Yi-Yang Chen, Chien-Chen Wu, Jye-Lin Hsu, Hwei-Ling Peng, Hwan-You Chang, and Tri-Rung Yew*, Surface Rigidity Change of Escherichia coli after Filamentous Bacteriophage Infection. Langmuir (2009) Vol. 25, P4607-4614,SCI-IF: 4.186.
Y. J. Hong, L. A. Tai, H. J. Chen, P. Chang, C. S. Yang*, T. R. Yew*, Stable water layers on solid surface, Phys. Chem. Chem. Phys., 18, 5905-5909, 2016, 2015SCI-IF: 4.449
S. E. Lai, Y. J. Hong, Y. T. Chen, Y. T. Kang, P. Chang, T. R. Yew*, Direct-Writing Cu Nano-Pattern with Electron Beam, Microsc. Microanal. 21, 1639–1643, 2015, 2015 SCI-IF: 1.730
Y. T. Chen, C. Y. Wang, Y. J. Hong, Y. T. Kang, S. E. Lai, P. Chang and T. R. Yew*., Electron beam manipulation of gold nanoparticles external to the beam, RSC Adv., 4, 31652, 2014. 2015 SCI-IF: 3.289
生物感測器之技術創新
Real-time and specific detection of single bacterium remains a fundamental challenge and draws very much attention. Using of interdigitated Au-electrode arrays modified with antibody, the specific and quantitative detection of the electrical conductivity of a single Escherichia coli (E. coli, JM109) has been carried.
In current research, we devote to develop a low cost, specific and sensitive biosensor built on liver chip. The project is supported by NSC 97-2120-M-007 -011.
AFM for bio-application
Detection of DNA and measurement of physical property in microbiology were studied by liquid atomic force microscopy (AFM) in our group, as the picture in the right side. DNA transferred through the F-pilus channel between an E. coli mating pair during their conjugation could be identified using anti-single-stranded DNA-functionalized AFM probe.
Furthermore, the feasibility of AFM to investigate the interaction between Escherichia coli and filamentous bacteriophage M13 in situ was demonstrated. After M13 phage infection, the lipopolysaccharide layer on the bacterial outer membrane may be damaged and released which leads E. coli to become less rigid. AFM provides a powerful tool for investigating these changes in a near-physiological environment.
Publications:
Yi-Chun Lu, Ya-Shuan Chuang, Yi-Yang Chen, An-Chi Shu, Hsing-Yu Hsu, Hwan-You Chang, and Tri-Rung Yew*, Bacteria detection utilizing electrical conductivity. Biosensors and Bioelectronics (2008) Vol. 23, P1856-1861, SCI-IF: 5.602.
An-Chi Shu, Chien-Chen Wu, Yi-Yang Chen, Hwei-Ling Peng, Hwan-You Chang, and Tri-Rung Yew*, Direct Evidence of DNA Transfer through F-pilus Channels during Escherichia coli Conjugation. Langmuir (2008) Vol.24, P6796-6802, SCI-IF: 4.186.
Y. H. Chuang, K. L. Liu, H. Y. Chang, and T. R. Yew*, Electrical Impedimetric Biosensors for Liver Function Detection, 2011, Biosensors and Bioelectronics, 28, 368– 372, 2011 SCI-IF: 5.602.
M. C. Tu, Y. T. Chang, Y. T. Kang, H. Y. Chang, P. Chang, and T. R. Yew*, A Quantum Dot-based Optical Immunosensor for Liver Function Detection, 2012, Biosensors and Bioelectronics, 34, 286-290, SCI- IF: 5.602.
Y. T. Chang, J. H. Huang, M. C. Tu, H. Y. Chang, P. Chang, and T. R. Yew*, Flexible Direct-Growth CNT Biosensors, Biosensors and Bioelectronics, 41, 898-902 (2013), SCI- IF: 5.602.
J. H. Huang, Y. J. Hong, Y. T. Chang, P. Chang, and T. R. Yew*, Carbon nanotubes for highly sensitive colorimetric immunoassay biosensor, journal of materials Chemistry B, 8, 5389-5392 (2013), SCI-IF: 4.872
C. H. Tsai, Y. J. Hong, J. H. Huang, Pin Chang, T. R. Yew*, A Readable Chromatic Biosensor with a Tunable Detection Threshold, Journal of Microbial & Biochemical Technology, Volume 8(5): 390-394 (2016) SCI-IF: 2.5
W. X. Wu, Y. C. Hung, K. L. Chan, T. R. Yew*, A Chromatic Sensor to Detect Free Radicals Using H2O2 as an Analyte with DTT and Au-NPs as Sensing Agents, Journal of Microbial & Biochemical Technology, Volume 11(1): 5-8 (2019) , SCI-IF: 3.15
M. L. Shih, C. T. Kuo, M. H. Lin, Y. J. Chuang, H. Chen, and T. R. Yew*, A 3D-CNT Micro-electrode Array for Zebrafish ECG Study including Directionlity Measurement and Drug Test, Biocybernetics and Biomedical Engineering, 40 (2020) I-8,2020 SCI-IF:4.314
H. N. Ku, W. F. Lin, H. L. Peng, and T. R. Yew*, In-situ Monitoring the Effect of Acoustic Vibration in the Form of Music on the Motility of Escherichia coli, Applied Acoustics 172 (2021) 107620-107625,2020 SCI-IF:2.639
神經電極之技術創新
Electrodes for Neural-Electro Mechanical Systems
This project will be focused on the fabrication of nano-probe, such as carbon nanotubes for neural probing. The major work includes the fabrication of nanometer-scale carbon nanotubes with characteristics of high mechanical strength so as to insertneuronsn without causing serious damage, and high conductivity for very sensitive detection of neuron potential variation. In this work, the neuron electrical potential will be monitored and stimulated using the fabricated nanoprobe/MEMS/controlled device system.
Lists of our work:
1.CNT nano-probes have been fabricated for neural recording.
2.CNT amino-functionalized suggested the amino groups enhance the growth of neuron cells on the electrode have been demonstrated.
3.CNTs have been synthesized on flexible substrates.
Publications:
H. L. Hsu, I .J. Teng, Y. C. Chen, W. L. Hsu, Y. T. Lee, S. J. Yen, H. C. Su, S. R. Yeh, H. Chen, T. R. Yew*, Flexible UV-ozone modified carbon nanotube electrode for neuronal recording, 2010, Advanced Materials, 22, 2177-2181, SCI-IF: 13.877.
H. C. Su, C.M. Lin, S. J. Yen, Y. C. Chen, C. H. Chen, S. R.Yeh, W. Fang, H. Chen, D. J. Yao, Y. C. Chang, and T. R. Yew*, A Cone-shaped 3D Carbon Nanotube Probe for Neural Recording, Biosensors and Bioelectronics, 26, 220–227 (2010) SCI-IF: 5.602.
C. H. Chen, H. C. Su, S. C. Chuang, S. J. Yen, Y. C. Chen, Y. T. Lee, H. Chen, T. R. Yew*, Yen-Chung Chang, S. R. Yeh, and D. J. Yao*, Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes, Nanotechnology, 21, 485501-485510 (2010), 2015 SCI Impact Factor: 3.573
S. J. Yen, Y. C. Chen, W. L. Hsu, H. Chen, S. R. Yeh, Y. C. Chang, T. R. Yew*, The enhancement of neural growth by amino-functionalization on carbon nanotubes as a neural electrode, 2011, Biosensors and Bioelectronics, 26, 4124-4132, 2011 SCI- IF: 5.602.
內連線之技術創新
Since S. Iijima discovered carbon nanotube (CNT) in 1991, it has become a potential candidate as a future interconnect material for its superior characteristics, including high carrier conductivity (109(A/cm2), about 1000 times of Cu), high thermal conductivity (6000 W/mK), high mechanical strength (Young’s Modulus ~1000 Gpa), and high thermal resistance (750 A/cm°C in air). However, the back-end interconnect processing temperature cannot be higher than 400 °C. This research is to develop a low temperature, self-assembly approach via catalyst selection to reduce the process complexity of fabricating CNT interconnect so as to provide a solution for interconnect scaling. Besides, new materials, such as alloy nanowires, were also investigated for interconnect applications.
In our previous results, we have demonstrated the feasibility of using electroless CoWP and NiP, Cu diffusion barrier material, as catalyst for CNT growth at 400 °C by chemical vapor deposition (CVD). To continue improving CNT density and interconnect-via resistance, plasma/chemical etching for surface pretreatment, the electroplating process, composition, and morphology of CoWP and NiP were also investigated. Furthermore, self-aligned CNT-via (100 nm via-holes) and CNT/CNF-wiring have been achieved. In addition to traditional CVD processes, we demonstrate the formation of carbon nanotubes (CNTs) by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.
Publications:
W. C. Yang, T. Y. Yang, and T. R. Yew*, Growth of Self-aligned Carbon Nanotube for Use as a Field-Effect Transistor Using Cobalt Silicide as a Catalyst, 2007, Carbon, 45, 1679-1685, SCI –IF:5.378.
T. Y. Yang, W. C. Yang, T. C. Tseng, C. M. Tsai, and T. R. Yew*, Ni-Cr Alloy to Enhance Single-Walled Carbon Nanotube Synthesis for Field-Effect Transistor Fabrication, 2007, Appl. Phys. Lett., 90, 223103, SCI-IF:3.844.
Y. T. Wu, H. C. Su, C. M. Tsai, K. L. Liu, G. D. Chen, R. H. Huang, and T. R. Yew*, Carbon Nanotube Formation by Laser Direct-Writing, Appl. Phys. Lett., 93, 023108-023110 (2008), also has been selected for the July 28, 2008 issue of Virtual Journal of Nanoscale Science & Technology, SCI-IF:3.844.
C. M. Tsai, G. D. Chen, T. C. Tseng, C. Y. Lee, C. T. Huang, W. Y. Tsai, W. C. Yang, M. S. Yeh, T. R. Yew*, CuO nanowire synthesis catalyzed by CoWP nano-filter, Acta Materialia, 57, 1570-1576 (2009), SSCI-IF: 3.775.
H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, and T. R. Yew*, Improving the adhesion of carbon nanotubes to a substrate using microwave treatment, Carbon, 48, 805-812 (2009). 2015 SCI Impact Factor: 6.198.
Y. L. Huang, C. M. Tsai, H. C. Su, R. H. Huang, K. L. Liu, and T. R. Yew*, Low temperature electroless Ni–P catalyst deposition enhanced by UV-exposure for carbon nanofiber and nanotube growth, J. Electrochemical Society, 157(2), K21-24 (2010) , SCI-IF:2.590.
Z. L. Liu, H. W. Wu, C. Y. Wang, S. Y. Chen, M. H. Hung, and T. R. Yew*, A method to form self-aligned carbon-nanotube-vias using a Ta-cap layer on a Co-catalyst, Carbon, 56, 366-373 (2013), SCI-IF: 5.378.
C. Y. Lin, C. Y. Wang, M. H. Hung, T. L. Liu, and T. R. Yew*, Low resistivity tin-doped copper nanowires, IEEE Electron Device Letters, 34, 529-531 (2013) SCI-IF:2.849.
奈米電子之技術創新
1. Carbon Nanotubes Field Emission Transistors (CNT FETs)
High quality semiconducting single-walled carbon nanotubes (SWNTs) were synthesized on multi-layer film by means of electron cyclotron resonance chemical vapor deposition (ECR-CVD). The patterned catalyst was pretreated by Ar and H2 plasma to produce nanoparticles in the first place. C2H2 was used as carbon source gas. He and H2 were used as carrier gas. The resulting SWNTs have high crystallization and good field-effect property than those SWNTs synthesized without reduction layer.
2. Organic Thin Film Transistors (OTFTs)
Organic thin film field-effect transistor (OTFTs) are particularly interesting as their fabrication processes are less complex compared with the silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET). In general, the advantages of OTFTs are low temperature depositions, solution processing, and mechanical flexibility with plastic substrate.
In our previous work, four newly n-type material 1) 1,4,5,8-naphthalenetetracarbolxylic diimide derivatives with phenylmethyl and (trifluoromethyl)-benzyl groups (NTCDI-P and NTCDI-F); 2) tetrachloroperylene-3,4,9,10-tetracarboxylic dianhydride derivative (TC-PDI-F and TC-PDI-C) were synthesized. All these materials could be fabricated into OTFTs for electrical property measurement by solution-process. Furthermore, all the fabrication processes anmeasurementsnt were conducted in air and exhibited out-standing air-stability. With such solution-processable materials and their air-stability in air, we can further utilize the low-cost property of organic thin film transistors.
3. Dielectric Layer for OTFT
OTFTs suffer from high operating voltage nowadays because of the low field-induced charge carrier mobilities of organic semiconductors. Therefore, it requires high current output for the application. In order to work out this issue, k value of the Dielectric layer of Organic TFT turns out very important. However, most high-k materials used currently in OTFT are not so easy to prepare. Besides, the preparation of those high-k materials almost needs high temperature process in which the plastic substrate cannot be compatible. Moreover, the adhesive property of those materials on the flexible substrate is poor. In conclusion, it is exigent to find new dielectric materials and develop a cheap and easy way to fabricate. We are trying to find new dielectric materials without the shortages mentioned above.
Publications :
Wei-Chang Yang, Tsung-Yeh Yang, and Tri-Rung Yew*, Growth of Self-aligned Carbon Nanotube for Use as a Field-effect Transistor Using Cobalt Silicide as a Catalyst, Carbon, 45, 1679-1685 (2007) SCI-IF:5.378.
T. Y. Yang, W. C. Yang, T. C. Tseng, C. M. Tsai, and T. R. Yew*, Ni-Cr Alloy to EnhanceSingle-Walled arbon Nanotube Synthesis for Field-Effect Transistor Fabrication, 2007, Appl.Phys. Lett., 90, 223103, SCI-IF:3.844.
Hui-Lin Hsu, Wei-Chang Yang, Ya-Lien Lee, and Tri-Rung Yew*, Poly Acrylonitrile as a Gate Dielectric Material, Appl. Phys. Lett., 91, 023501 (2007)SCI-IF: 3.844.
Ya-Lien Lee, Hui-Lin Hsu, Szu-Ying Chen, and Tri-Rung Yew*, Solution-Processed Naphthalene Diimide Derivatives as n-type Semiconductor Materials, J. Phys. Chem. C., 112, 1694 (2008) SCI-IF:4.805.
Y. P. Wang, Y. C. Lee, Y. J. Hong, and T. R. Yew*, A novel method for soluble hydrophilic anthracene derivative self-assembled on APTES in air, 2012, Organic Electronics, 13, 2417-2421, SCI-IF: 4.047.
H. W. Ting, S.Y. Chen, T. C. Huang, J. H. Wei, and T. R. Yew*, Solution-Processed Air-Stable Perylene Diimide Derivatives n-type Semiconductors for Organic Thin Film Transistors, 2011, ChemPhyChem, 12, 871-877, SCI-IF: 3.412.
A. I. Pan, M. H. Lin, H. W. Chung, H. Chen, S. R. Yeh, Y. J. Chuang, Y. C. Chang and T. R. Yew*, Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recordings, Analyst, 141, 279, 2016, 2015 SCI-IF: 4.033
劉國良,游萃蓉 (Kuo-Liang Liu, Tri-Rung Yew),中華民國專利號: I330380,美國專利號: US7807979B2,技轉予閎康科技。
吳寧育,陳義洋,游萃蓉 (Ning-Yu Wu, Yi-Yang Chen, T. R. Yew*),中華民國專利號: I340730,美國專利號: US7754107B2。
吳昱璁,黃仁鴻,蔡宗閔,蘇煥傑,游萃蓉 (Yu-Tsung Wu,Ren-Hong Huang, Huan-Chieh Su, Chung-Min Tsai, Huan-Chieh Su, and Tri-Rung Yew*)中華民國專利號: I 364816 ,美國專利號: U7858147B2。
蘇煥傑,陳勰,陳新,張兗君,葉世榮,方維倫,傅建中,游萃蓉* ,中華民國專利號: I317016。
顏湘婕,蘇煥傑,游萃蓉*,張兗君,許瑋倫,葉世榮 (Shiang-Jie Yen, Wei-Lun Hsu, Huan-Chieh Su, Tri-Rung Yew*, Yen-Chung Chang, Wei-Lun Hsu, Shih-Rung Yeh),中華民國專利號: I372141,美國專利號: US8593052B1。
徐慧琳,游萃蓉*,陳新,陳永展,中華民國專利號: I 382007。
王裕平,丁姮彣,蔡宗閔,游萃蓉* (Yu-Ping Wang, Heng-Wen Ting, Cung-Min Tsai, Tri-Rung Yew*),中華民國專利號: I422573,美國專利號: US8368057B2。
徐惠纓,游萃蓉*,中華民國專利號: I479667。
陳瀚儀,陳家庠,蘇煥傑,劉國良,游萃蓉* (Han-Yi Chen, Chia-Hsiang Chen, Huan-Chieh Su, Kuo-Liang Liu, Tri-Rung Yew*),中華民國專利號: I413430,美國專利號: US8609981B2。
曾子純,游萃蓉,中華民國專利號: I315560。
吳欣薇,蔡宗閔,游萃蓉 (Hsin-Wei Wu, Chung-Min Tsa, Tri-Rung Yew*),中華民國專利號: I428274,美國專利號: US8461037B2。
潘怡安,游萃蓉,陳新,洪英展,中華民國專利號: I 569771。
楊偉昌,游萃蓉*,中華民國專利號: I311344。
賴世恩,洪英展,張平,游萃蓉,中華民國專利號:I 489516
Che-Ning Yeh, Chun-Te Ho, Tri-Rung Yew* 美國專利號:US8937241B2。
黃淨惠,洪英展,張平,游萃蓉,中華民國專利號:I 547692。
洪英展,王粲琁,張平,游萃蓉,中華民國專利號:I 559519。
許祐銘,游萃蓉,中華民國專利號:I518037。
I-An Pan, Tri-Rung Yew*, Hsin Chen, Yung-Jen Chuang,美國專利號:US9662062B2。
朱昱穎、洪英展、陳翰儀、游萃蓉,中國專利號:CN108539151B,技轉予源綠科技。
朱昱穎、洪英展、陳翰儀、游萃蓉,中華民國專利號:I663128,技轉予源綠科技。
Yu-Ying Chu, Ying-Chan Hung, Han-Yi Chen, Tri-Rung Yew,日本專利號:JP6622364,技轉予源綠科技。
Yu-Ying Chu, Ying-Chan Hung, Han-Yi Chen, Tri-Rung Yew,美國專利號:US10615449B2,技轉予源綠科技。
游萃蓉,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中華民國專利號:I736105,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中華民國專利號:I749800,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中華民國專利號:I753599,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中華民國專利號: I750837 ,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN113130889B,技轉予源綠科技。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,美國專利號:US 0226208 A1。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,日本專利號:JP7256560,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114824248B,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114864926B,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114725359B,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114725368B,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114725373B,技轉予源綠科技。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,日本專利號:JP7410593,技轉予源綠科技。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,日本專利號:JP7410594,技轉予源綠科技。
游萃蓉*,藍凱威,何俊德,郭家彤,冀天齊,李羿廷,蔡昀真,中國專利號:CN114725360B,技轉予源綠科技。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,美國專利號:US11894556B2,技轉予源綠科技。
Tri-Rung Yew, Kai-Wei Lan, Chun-Te Ho, Chia-Tung Kuo, Tien-Chi Ji, Yi-Ting Lee, Yun-Chen Tsai,美國專利號:US11901554B2,技轉予源綠科技。
Other paper Publications
H. C. Cheng, T. R. Yew, and L. J. Chen, Interfacial Reactions of Iron Thin Films on Silicon, J. Appl. Phys. 57, 5246 (1985) – 2015 SCI Impact Factor: 2.101
H. C. Cheng, T. R. Yew, and L. J. Chen, Epitaxial Growth of FeSi2 in Fe Thin Films on Silicon with a Thin Interposing Ni Layer, Appl. Phys. Lett. 47, 128 (1985) - SCI Impact Factor: 3.142
L. M. Garverick, J. H. Comfort, T. R. Yew, and R. Reif, Silicon Surface Cleaning by Low Dose Argon-Ion Bombardment for Low Temperature (750 °C) Epitaxial Deposition, II. Epitaxial Quality, J. Appl. Phys. 62, 3398 (1987) – 2015 SCI Impact Factor: 2.101
W. R. Burger, J. H. Comfort, L. M. Garverick, T. R. Yew, and R. Reif, Bipolar Transistor Fabrication in Low-Temperature (745 °C) Ultra-Low-Pressure Chemical-Vapor-Deposition, IEEE Electron Device Letters, EDL-8, 168 (1987) – 2015 SCI Impact Factor : 2.528
T. R. Yew*, J. H. Comfort, L. M. Garverick, W. R. Burger, and R. Reif, Cross-Sectional TEM Characterization of Low Temperature (750-800 °C) Epitaxial Silicon by Very Low Pressure Chemical Vapor Deposition With and Without Plasma Enhancement, J. Electronic Materials, 17, 139 (1988) – 2015 SCI Impact Factor: 1.491
T. R. Yew*, K. O, and R. Reif, Silicon Epitaxial Growth on (100) Patterned Oxide Wafers at 800 °C by Ultralow Pressure Chemical Vapor Deposition, Appl. Phys. Lett. 52, 1797 (1988) – 2015 SCI Impact Factor: 3.142
B. -Y. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, IrSi Schottky-Barrier Infrared Detectors with 10-μm Cutoff Wavelength, IEEE Electron Device Letters, 9, 650 (1988) – 2015 SCI Impact Factor: 2.528
T. R. Yew* and R. Reif, Selective Silicon Epitaxial Growth at 800 °C by Ultralow-Pressure Chemical Vapor Deposition Using SiH4 and SiH4/H2, J. Appl. Phys. 65, 2500 (1989) – 2015 SCI Impact Factor: 2.101
T. R. Yew* and R. Reif, Silicon Selective Epitaxial Growth at 800 °C Using SiH4/H2 Assisted by H2/Ar Plasma Sputter, Appl. Phys. Lett. 55, 1014 (1989) – 2015 SCI Impact Factor: 3.142
T. R. Yew* and R. Reif, High Structural Quality Epi/Oxide Boundaries Epitaxial Growth by SiH4/H2 Chemical Vapor Deposition Using Growth-Sputter Cycles, Appl. Phys. Lett. 56, 2105 (1990) – 2015 SCI Impact Factor: 3.142
T. R. Yew* and R. Reif, Low Temperature In-Situ Surface Cleaning of Oxide Patterned Wafers by Ar/H2 Plasma Sputter, J. Appl. Phys. 68, 4681 (1990) – 2015 SCI Impact Factor: 2.101
T. R. Yew* and R. Reif, In-situ Doping in Silicon Selective Epitaxial Growth at 800 °C by Ultra-low Pressure Chemical Vapor Deposition, Appl. Phys. Lett., 57 (19), 2010 (1990) – 2015 SCI Impact Factor: 3.142
Y. J. Lin and T. R. Yew*, Silicon Epitaxy Grown by Electron-Beam Evaporation in Ultra-High Vacuum at 200 °C, Appl. Phys. Lett. 61, 1396 (1992) - 2015 SCI Impact Factor: 3.142
T. Y. Chiang, D. H. Yiin, E. H. Liu, and T. R. Yew*, Low Temperature (490 °C) GaAs Epitaxial Growth on (100) Si by Molecular Beam Epitaxy, Appl. Phys. Lett. 62, 985 (1993) – 2015 SCI Impact Factor: 3.142
T. R. Yew*, Y. J. Lin, M. D. Shieh, and C. H. Chen, Structural Properties of Silicon Epitaxial Growth at 200-600 °C by Electron-Beam Evaporation in an Ultra-High Vacuum System, J. Appl. Phys. 73, 4932 (1993) – 2015 SCI Impact Factor: 2.101
C. H. Chen, C. M. Wan, T. R. Yew*, M.D. Shieh, and C. Y. Kung, Silicon Epitaxial Growth at 300 °C by Plasma Enhanced Chemical Vapor Deposition from SiH4/H2, Appl. Phys. Lett. 62, 3126 (1993) – 2015 SCI Impact Factor: 3.142
M. D. Shieh, C. Lee, C. H. Chen, T. R. Yew*, and C. Y. Kung, Low Temperature (313 °C) Silicon Epitaxial Growth by Plasma Enhanced Chemical Vapor Deposition with Stainless Steel Mesh, Appl. Phys. Lett. 63, 1253 (1993) – 2015 SCI Impact Factor: 3.142
K. C. Hsu, B. Y. Chen, H. T. Hsu, K. C. Wang, T. R. Yew, and H. L. Hwang, Thin Film Transistors Made from Hydrogenated Microcrystalline Silicon, Jpn. J. Appl. Phys. 33, 639 (1993) – 2015 SCI Impact Factor: 1.122
K. C. Wang, H. L. Hwang, and T. R. Yew*, Sulfurization of SiO2 Surface for Polycrystalline Silicon Growth on SiO2/Si Structure at 250 °C, Appl. Phys. Lett. 64, 1024 (1994) – 2015 SCI Impact Factor: 3.142
T. Y. Chiang, E. H. Liu, and T. R. Yew*, Low Temperature (490 °C) GaAs Epitaxial Growth on Si (100) by Molecular Beam Epitaxy and the Post-Growth Rapid Thermal Annealing, J. Crystal Growth, 135, 469 (1994) – 2015 SCI Impact Factor: 1.462
M. D. Shieh, C. Lee, and T. R. Yew*, The Kinetics of Very Low Temperature (~300 °C) Silicon Epitaxial Growth by Plasma Enhanced Chemical Vapor Deposition with Stainless Steel Mesh, J. Electrochem. Soc., 141, 3584 (1994) – 2015 SCI Impact Factor: 3.014
C. H. Chen and T. R. Yew*, Silicon Epitaxial Growth by Plasma Enhanced Chemical Vapor Deposition from SiH4/H2 at 165 -350 °C, J. Crystal Growth, 147, 305 (1995) – 2015 SCI Impact Factor: 1.462
C. C. Liu, C. Lee, K. L. Cheng, H. C. Cheng, and T. R. Yew*, Effect of SiH4/CH4 Flow Ratio on the Growth of β-SiC on Si by Electron Cyclotron Resonance Chemical Vapor Deposition at 500 °C, Appl. Phys. Lett. 66, 168 (1995) – 2015 SCI Impact Factor: 3.142
K. C. Wang, K. L. Cheng, Y. L. Jiang, T. R. Yew*, and H. L. Hwang, Very Low Temperature Deposition of Polycrystalline Si Films Fabricated by Hydrogen Dilution with Electron Cyclotron Resonance Chemical Vapor Deposition, Jpn. J. Appl. Phys. 34, 293 (1995) – 2015 SCI Impact Factor: 1.122
K. C. Wang, H. L. Hwang, P. T. Leong, and T. R. Yew*, Microstructures of Low Temperature Deposited Polycrystalline Silicon with Micron Meter Grains, J. Appl. Phys. 77 (12) 6542 (1995) – 2015 SCI Impact Factor : 2.101
K. L. Cheng, H. C. Cheng, C. C. Liu, C. Lee, and T. R. Yew*, Microcrystalline SiC Films Grown by Electron Cyclotron Resonance Chemical Vapor Deposition at Low Temperatures, Jpn. J. Appl. Phys. Vol.34, 5527 (1995) – 2015 SCI Impact Factor: 1.122
C. C. Liu, C. Lee, K. L. Cheng. H. C. Cheng, and T. R. Yew*, Growth of SiC Films by Electron Cyclotron Resonance Chemical Vapor Deposition Using SiH4/CH4/H2, J. Electrochem. Soc. Vol.142, 4279 (1995) - 2015 SCI Impact Factor : 3.014
T. R. Yew*, Plasma Enhanced Chemical Vapor Deposition, Instruments Today, Vol.17, No.2, 66 (1995) (Invited)
H. L. Hwang, K. C. Wang, K. C. Hsu, T. R. Yew*, J. J. Leferski, Microstructure Evolution of Hydrogenated Silicon Thin Films, Progress in Photovoltaics, 4(30), 165 (1996) – 2015 SCI Impact Factor: 7.365
K. C. Wang, H. L. Hwang, J. J. Lerferski, T. R. Yew*, Studies on Low Temperature Silicon Grain Growth on SiO2 by Electron Resonance Chemical Vapor Deposition, Applied Surface Science,104, 373 (1996) – 2015 SCI Impact Factor: 3.150
T. R. Yew*, Introduction of Si Thin Film, Materials Science Bulletin, Vol.4, No.1, 6 (1996) (Invited)
K . C. Wang, H. L. Hwang, and T. R. Yew*, Very Low Temperature Polycrystalline Silicon Films with Very Large Grains Deposition for Thin Film Transistors, Applied Surface Science, Vol. 92, 99 (1996) – 2015 SCI Impact Factor: 3.150
K. L. Cheng, H. C. Cheng, W. H. Lee, C. Lee, C. C. Liu, and T. R. Yew*, Deposition of Polycrystalline β-SiC Films on Si Substrate at Room Temperature, Appl. Phys. Lett. Vol.70, 223 (1997) – 2015 SCI Impact Factor: 3.142
H. L. Hwang, K. C. Wang, K. C. Hsu, R. Y. Wang, T. R. Yew*, Laferski, Microstruture Evolution of Hydrogenated Silicon Thin Films at Different Hydrogen Incorporation, Applied Surface Science, 114, 741 (1997) – 2015 SCI Impact Factor: 3.150
H. L. Hsiao, H. L. Hwang, A. B. Yang, L. W. Cheng, and T. R. Yew*, Study on Low Temperature Faceting Growth of Polycrystalline Silicon Thin Films by ECR Downstream Plasma CVD with Different Hydrogen Dilution, Applied Surface Science, 142, 316, (1999) – 2015 SCI Impact Factor: 3.150
J. C. Hu, T C Chang, C. W. Wu, L. J. Chen, C. S. Hsiung, W. Y. Hsieh, W. Lur, and T. R. Yew*, Effects of a New Combination of Additives in Electroplating Solution on the Properties of Cu Film in ULSI Applications, J. Vac. Sci. Technol. A, 18, 1207 (2000) -2015 SCI Impact Factor: 1.724
W. H. Lee, J. C. Lin, C. Lee, H. C. Cheng, T. R. Yew*, A Comparison Study of Ar and H2 as Carrier Gases for the Growth of SiC Films on Si (100) by Electron Cyclotron Resonance Chemical Vapor Deposition, Diamond and Related Materials, 10(11), 2075-2083 (2001) – 2015 SCI Impact Factor: 2.125
W. H. Lee, J. C. Lin, H. C. Cheng, T. R. Yew*, Effects of CH4/SiH4 Flow and Microstructure Power on the Growth of β-SiC on Si by ECR-CVD using CH4/SiH4/Ar at 200 °C, Thin Solid Films, 405(1-2), 17 (2002) – 2015 SCI Impact Factor: 1.761
J. H. Wang, L. J. Chen, Z. C. Lu, C. S Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew*, Ta and Ta-N Diffusion Barriers Sputtered with Various N2/Ar Ratios for Cu Metallization, J. Vac. Sci. and Technol. B, Vol. 20, No.4, 1522 (2002). – 2015 SCI Impact Factor : 1.398
T. R. Yew, 金屬連線技術, invited, 電子與材料 (Electronics & Materials), 第 24 期, ISSN 1561-9672, pp. 84-88 (2004) (Invited)