Quadratic X Cubic Bezier curves - data 1
Quadratic X Quartic Bezier curves - data 2
Quadratic X Quintic Bezier curves - data 3
Cubic X Quartic Bezier curves - data 1
Blue Curve: degree 5, control points,
P0(436.00, 358.00), P1( 20.00, 403.00), P2(925.00, 349.00), P3(187.00, 459.00), P4(586.00, 549.00), P5(370.00, 328.00);
Red Curve: degree 3, control points,
P0(330.00, 368.00), P1(775.00, 609.00), P2( 37.00, 151.00), P3(476.00, 456.00);
Self Intersection point at:
S0(414.224205680919795, 412.619834239034162); t1 = 0.078688717236807, t2 = 0.945389574756285;
The Intersection point(s) of these two curves:
X00(368.919870726338274, 366.018825262506368), X01(353.766302414667734, 368.300933808368995), X02(336.914763483779723, 371.740048883869918);
X03(354.119093000801570, 381.000249627271387), X04(374.842850410479912, 384.155571625937910), X05(408.846473761144807, 390.254477761789815);
X06(466.121096128374859, 437.547979614816427), X07(467.894169687852013, 430.010117475628022), X08(461.714064690331213, 446.054416507233896);
X09(438.693220714947188, 424.909602104280225), X10(427.544189506863859, 402.199590710309849), X11(441.535866894229571, 431.928446880205115);
Blue Curve's t value(s):
t00 = 0.042823368092273, t01 = 0.058692670452746, t02 = 0.087496325946175;
t03 = 0.200361995447302, t04 = 0.239616414761425, t05 = 0.301070379685535;
t06 = 0.577476552388838, t07 = 0.537394207245549, t08 = 0.629630510525911;
t09 = 0.870928737921569, t10 = 0.913444358842828, t11 = 0.853731923064865;
Red Curve's t value(s):
t00 = 0.584935193387846, t01 = 0.858737928838793, t02 = 0.005252689914393;
t03 = 0.019015877374833, t04 = 0.896415322498589, t05 = 0.491895673213038;
t06 = 0.170429335963471, t07 = 0.334067024776204, t08 = 0.988820060072229;
t09 = 0.112599899265739, t10 = 0.449031424081166, t11 = 0.971728955199896;
Cubic X Quintic Bezier curves - data 2
Quartic X Quintic Bezier curves - data 1
Quartic X Quintic Bezier curves - data 2