Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.[1]

Surveyors work with elements of geodesy, geometry, trigonometry, regression analysis, physics, engineering, metrology, programming languages, and the law. They use equipment, such as total stations, robotic total stations, theodolites, GNSS receivers, retroreflectors, 3D scanners, LiDAR sensors, radios, inclinometer, handheld tablets, optical and digital levels, subsurface locators, drones, GIS, and surveying software.


Bc Punmia Surveying Vol 1 Pdf Download


Download File 🔥 https://byltly.com/2y4yPf 🔥



The Romans recognized land surveying as a profession. They established the basic measurements under which the Roman Empire was divided, such as a tax register of conquered lands (300 AD).[5] Roman surveyors were known as Gromatici.

In the 18th century, modern techniques and instruments for surveying began to be used. Jesse Ramsden introduced the first precision theodolite in 1787. It was an instrument for measuring angles in the horizontal and vertical planes. He created his great theodolite using an accurate dividing engine of his own design. Ramsden's theodolite represented a great step forward in the instrument's accuracy. William Gascoigne invented an instrument that used a telescope with an installed crosshair as a target device, in 1640. James Watt developed an optical meter for the measuring of distance in 1771; it measured the parallactic angle from which the distance to a point could be deduced.

Dutch mathematician Willebrord Snellius (a.k.a. Snel van Royen) introduced the modern systematic use of triangulation. In 1615 he surveyed the distance from Alkmaar to Breda, approximately 72 miles (116 km). He underestimated this distance by 3.5%. The survey was a chain of quadrangles containing 33 triangles in all. Snell showed how planar formulae could be corrected to allow for the curvature of the Earth. He also showed how to resect, or calculate, the position of a point inside a triangle using the angles cast between the vertices at the unknown point. These could be measured more accurately than bearings of the vertices, which depended on a compass. His work established the idea of surveying a primary network of control points, and locating subsidiary points inside the primary network later. Between 1733 and 1740, Jacques Cassini and his son Csar undertook the first triangulation of France. They included a re-surveying of the meridian arc, leading to the publication in 1745 of the first map of France constructed on rigorous principles. By this time triangulation methods were well established for local map-making.

The US Air Force launched the first prototype satellites of the Global Positioning System (GPS) in 1978. GPS used a larger constellation of satellites and improved signal transmission, thus improving accuracy. Early GPS observations required several hours of observations by a static receiver to reach survey accuracy requirements. Later improvements to both satellites and receivers allowed for Real Time Kinematic (RTK) surveying. RTK surveys provide high-accuracy measurements by using a fixed base station and a second roving antenna. The position of the roving antenna can be tracked.

The main surveying instruments in use around the world are the theodolite, measuring tape, total station, 3D scanners, GPS/GNSS, level and rod. Most instruments screw onto a tripod when in use. Tape measures are often used for measurement of smaller distances. 3D scanners and various forms of aerial imagery are also used.

Modern top-of-the-line total stations no longer need a reflector or prism to return the light pulses used for distance measurements. They are fully robotic, and can even e-mail point data to a remote computer and connect to satellite positioning systems, such as Global Positioning System. Real Time Kinematic GPS systems have significantly increased the speed of surveying, and they are now horizontally accurate to within 1 cm  1 ppm in real-time, while vertically it is currently about half of that to within 2 cm  2 ppm.[11]

GPS surveying differs from other GPS uses in the equipment and methods used. Static GPS uses two receivers placed in position for a considerable length of time. The long span of time lets the receiver compare measurements as the satellites orbit. The changes as the satellites orbit also provide the measurement network with well conditioned geometry. This produces an accurate baseline that can be over 20 km long. RTK surveying uses one static antenna and one roving antenna. The static antenna tracks changes in the satellite positions and atmospheric conditions. The surveyor uses the roving antenna to measure the points needed for the survey. The two antennas use a radio link that allows the static antenna to send corrections to the roving antenna. The roving antenna then applies those corrections to the GPS signals it is receiving to calculate its own position. RTK surveying covers smaller distances than static methods. This is because divergent conditions further away from the base reduce accuracy.

Land surveyors, construction professionals, geomatics engineers and civil engineers using total station, GPS, 3D scanners, and other collector data use Land Surveying Software to increase efficiency, accuracy, and productivity. Land Surveying Software is a staple of contemporary land surveying.[13]

Triangulation is a method of horizontal location favoured in the days before EDM and GPS measurement. It can determine distances, elevations and directions between distant objects. Since the early days of surveying, this was the primary method of determining accurate positions of objects for topographic maps of large areas. A surveyor first needs to know the horizontal distance between two of the objects, known as the baseline. Then the heights, distances and angular position of other objects can be derived, as long as they are visible from one of the original objects. High-accuracy transits or theodolites were used, and angle measurements were repeated for increased accuracy. See also Triangulation in three dimensions.

Traversing is a common method of surveying smaller areas. The surveyor starts from an old reference mark or known position and places a network of reference marks covering the survey area. They then measure bearings and distances between the reference marks, and to the target features. Most traverses form a loop pattern or link between two prior reference marks so the surveyor can check their measurements.

Many surveys do not calculate positions on the surface of the earth, but instead, measure the relative positions of objects. However, often the surveyed items need to be compared to outside data, such as boundary lines or previous survey's objects. The oldest way of describing a position is via latitude and longitude, and often a height above sea level. As the surveying profession grew it created Cartesian coordinate systems to simplify the mathematics for surveys over small parts of the earth. The simplest coordinate systems assume that the earth is flat and measure from an arbitrary point, known as a 'datum' (singular form of data). The coordinate system allows easy calculation of the distances and direction between objects over small areas. Large areas distort due to the earth's curvature. North is often defined as true north at the datum.

Plane surveying assumes the earth is flat. Curvature and spheroidal shape of the earth is neglected. In this type of surveying all triangles formed by joining survey lines are considered as plane triangles. It is employed for small survey works where errors due to the earth's shape are too small to matter.[18]

In geodetic surveying the curvature of the earth is taken into account while calculating reduced levels, angles, bearings and distances. This type of surveying is usually employed for large survey works. Survey works up to 100 square miles (260 square kilometers ) are treated as plane and beyond that are treated as geodetic.[19] In geodetic surveying necessary corrections are applied to reduced levels, bearings and other observations.[20]

Licensing requirements vary with jurisdiction, and are commonly consistent within national borders. Prospective surveyors usually have to receive a degree in surveying, followed by a detailed examination of their knowledge of surveying law and principles specific to the region they wish to practice in, and undergo a period of on-the-job training or portfolio building before they are awarded a license to practise. Licensed surveyors usually receive a post nominal, which varies depending on where they qualified. The system has replaced older apprenticeship systems.

Most countries' governments regulate at least some forms of surveying. Their survey agencies establish regulations and standards. Standards control accuracy, surveying credentials, monumentation of boundaries and maintenance of geodetic networks. Many nations devolve this authority to regional entities or states/provinces. Cadastral surveys tend to be the most regulated because of the permanence of the work. Lot boundaries established by cadastral surveys may stand for hundreds of years without modification.

Most English-speaking countries consider building surveying a distinct profession. They have their own professional associations and licensing requirements. A building surveyor can provide technical building advice on existing buildings, new buildings, design, compliance with regulations such as planning and building control. A building surveyor normally acts on behalf of his or her client ensuring that their vested interests remain protected. The Royal Institution of Chartered Surveyors (RICS) is a world-recognised governing body for those working within the built environment.[21] e24fc04721

eba credit institution register download

grade 3 driver admit card download

guardian angel riddim mix mp3 download

download free acholi bible

download ludo royal java game