How can the dynamic behaviour of a mechanical mass-spring-damper system be similar to an electrical resistance-capacitance-inductance circuit? Motivated by this question, this course introduces the signals – systems framework that helps in describing the dynamic behaviour of systems for a variety of inputs (signals). Useful analysis tools both in the frequency- and the time-domain are also introduced. In the later part of the course, these concepts will be used to understand basic signal processing in the form of both analogue and digital filter design.
This is the second course in control engineering which looks at the state-space representation of systems as well as state-space based control design techniques. The course also introduces basic concepts in System Identification and Nonlinear Control. Traditional continuous-time as well as sampled-data (digital) systems are covered.
Intelligent Robotics for Energy Infrastructure is designed to provide students with a comprehensive understanding of how robotic technologies can be intelligently applied to enhance the design, construction and maintenance of energy infrastructure. The course explores the intersection of robotics, artificial intelligence and energy systems, aiming to equip students with the skills and knowledge required to address contemporary challenges in the rapidly evolving energy sector.
Ever wondered how Excel is able to draw an optimal line through a set of points? This course looks at how typical engineering problems that cannot be described mathematically (or are difficult to do so) can be solved so that the optimal solution is found. The course contains a range of examples to show how the techniques are applied to real world problems in different engineering disciplines. The course will show how to develop computational algorithms from scratch, with a fundamental understanding of how the algorithms function, both mathematically and then in real time on a computer.
Robotics is an essential component of Industry 4.0. The adoption of robots in industries worldwide is on the rise and robotic arms are the most successful robotic platform.
The course introduces students to the analysis and use of robot arms, by exposing them to the theoretical basis of robotics as well as their practical implementation. This course focuses on the kinematics, dynamics and control of robotic arms.
The course provides students with knowledge and understanding of the basics of: circuit theory, RC, RL and RLC configurations, transformers, capacitors, inductors and different technologies of transistors. Both classical analysis and computer-based simulations are used to understand the behaviour of the transient and steady-state response of these circuits.