M. Eckardt, A.Z., Global existence of solutions to a nonlocal equation with degenerate anisotropic diffusion, J. Math. Anal. Appl., 543(2), p. 128971 (2025). Link arXiv:2406.15318
M. L. Rajendran, A. Z., Local well-posedness for a novel nonlocal model for cell-cell adhesion via receptor binding, SIAM J. Math. Anal., 57(4), pp. 4016-4067 (2025) Link arXiv:2404.15222
A. Z., Global entropy solutions to a degenerate parabolic-parabolic chemotaxis system for flux-limited dispersal, Nonlinear Anal. Real World Appl., 79, p. 104132 (2024) Link arXiv:2401.03887
A. Z., M. L. Rajendran, Modelling non-local cell-cell adhesion: a multiscale approach, J. Math. Biol., 88, 55 (2024) Link arXiv:2308.05676
P. Kumar, C. Surulescu, A. Z., Multiphase modelling of glioma pseudopalisading under acidosis, Math. Eng., 4(6), paper no. 49 (2022). Link. arXiv:2106.15241
A. Z., Flux limitation mechanisms arising in multiscale modelling of cancer invasion, Math. Proc. R. Ir. Acad., 122(1), pp. 5-26 (2022). Link. arXiv:2109.14009
A. Z., C. Surulescu, A novel derivation of rigorous macroscopic limits from a micro-meso description of signal-triggered cell migration in fibrous environments, SIAM J. Appl. Math., 82(1), pp. 142–167 (2022). Link. arXiv:2010.04148
L. Chen, K. J Painter, C. Surulescu, A. Z., Mathematical models for cell migration: a nonlocal perspective, Philos. Trans. Royal Soc. B, 375:20190379. Link. arXiv:1911.05200
M. Eckardt, K. Painter, C. Surulescu, A. Z., Nonlocal and local models for taxis in cell migration: a rigorous limit procedure, J. Math. Biol., 81, pp. 1251–1298 (2020) Link. arXiv:1908.10287
C. S. Ruoja, C. Surulescu, A. Z., On a model for epidemic spread with interpopulation contact and repellent taxis, Adv. Math. Sci. Appl., 28(1), pp. 99-113. arXiv:1902.02171
A. Z., Generalised global supersolutions with mass control for systems with taxis, SIAM J. Math. Anal., 51(3), pp. 2425–2443. Link. arXiv:1806.06715 (most resent version).
A. Z., Generalised supersolutions with mass control for the Keller-Segel system with logarithmic sensitivity, J. Math. Anal. Appl., 467(2), pp. 1270-1286. Link. arXiv:1804.05333
M. Efendiev, A. Z., On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis, Discrete Contin. Dyn. Syst., Ser. A, 38(2), pp. 651-673. Link. arXiv:1705.10403
S. A. Hiremath, C. Surulescu, A. Z., S. Sonner, On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discrete Contin. Dyn. Syst., Ser. B, 23(6), pp. 2339-2369. Link. KLUEDO
A. Z., C. Surulescu, A. Hunt, Global existence for a degenerate haptotaxis model of tumor invasion under the go-or-grow dichotomy hypothesis, Math. Methods Appl. Sci., 41(6), pp. 2403-2428. Link. arXiv:1605.09226
A. Z., C. Surulescu, A. Uatay, On the global existence for a degenerate haptotaxis model for cancer cell invasion, Z. Angew. Math. Phys., 67: 146. Link. arXiv:1512.04287
T. Horger, C. Kuttler, B. Wohlmuth, A. Z., Analysis of a bacterial model with nutrient-dependent degenerate diffusion, Math. Methods Appl. Sci., 38(17), pp. 3851–3865. Link.
H.J. Eberl, M.A. Efendiev, D. Wrzosek, A. Z., Analysis of a degenerate biofilm model with a nutrient taxis term, Discrete Contin. Dyn. Syst., Ser. A, AIMS, 34(1), pp. 99-119. Link.
M.A. Efendiev, A. Z., T. Senba, On a weak attractor of a class of PDEs with degenerate diffusion and chemotaxis, J. Math. Soc. Japan, 66(4), pp. 1133 - 1153. Link.
M.A. Efendiev, A. Z., On the global attractor of a class of PDEs with degenerate diffusion and chemotaxis: 1D-Case, Proceedings of a Conference in Honor of Jürgen Scheurle (Edc. A. Johann, H.-P. Kruse, F. Rupp, S. Schmitz), Springer Proc. Math. Stat. & Statistics, 35, Springer Basel, pp. 179-203. Link.
M.A. Efendiev, A. Z., On the global uniform pull-back attractor of a class of PDEs with degenerate diffusion and chemotaxis, Adv. Math. Sci. Appl., 23(2), pp. 437-460.
M.A. Efendiev, A. Z., On a 'balance' condition for a class of PDEs including porous medium and chemotaxis effect: non-autonomous case, Adv. Math. Sci. Appl., 21, pp. 285-304.
A. Z., On the Positivity of the Clamped Plate Equation for Cubic Perturbations of a Disk in R^2, Int. J. Biomath. Biostat., 1 (2), pp. 181-190.
A. Z., The Malliavin derivative and compactness: application to a degenerate PDE-SDE coupling. arXiv:1609.01495
A. Z., On a new transformation for generalised porous medium equations: from weak solutions to classical. arXiv:1410.6622
A. Z., Biofilm Models with Various Nonlinear Effects: Long-time Behavior of Solutions (2013). Link.