Python, A. et al. Predicting non-state terrorism worldwide. Science Advances. (2021)
Paper: link
Data replication (see right panel to access data)
Guo H., Python, A. and Liu Y. Extending regionalization algorithms to explore spatial process heterogeneity. International Journal of Geographic Information Science. 2023. DOI: 10.1080/13658816.2023.2266493
Paper: click here
Kefyalew A., Python, A. et al. Mapping tuberculosis prevalence in Ethiopia using geospatial meta-analysis. International Journal of Epidemiology. 2023. DOI: 10.1093/ije/dyad052
Paper: click here
Seufert J., Python, A., Weisser C., Cisneros E., Kis-Katos K., and Kneib T. Mapping ex-ante risks of COVID-19 in Indonesia using a Bayesian geostatistical model on airport network data. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2022. DOI: 10.1111/rssa.12866
Paper: click here
Linfei Y., Guoyong L., and Python, A. Attribution of the spatial heterogeneity of Arctic surface albedo feedback to the dynamics of vegetation, snow and soil properties and their interactions. Environmental Research Letters. 2022. 17(1):014036
Paper: please contact the corresponding author.
B. Qin, F. Huang, S. Huang, Python, A., Y. Chen, and J ZhangZhou. Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. Journal of Geophysical Research: Solid Earth. 2022. 127(5).
Paper: please contact the corresponding author.
Zhenqian Chen, Yongheng Shang, Python, André, Yuxiang Cai, and Jianwei Yin. DB-BlendMask: Decomposed Attention and Balanced BlendMask for Instance Segmentation of High-Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing. 2022. 60:1-15.
Paper: please contact the corresponding author.
Brandsch, J. and Python, A. Provoking ordinary people. The effects of terrorism
on civilian violence. Journal of Conflict Resolution. 2021. DOI: 10.1177/0022002720937748
Paper: click here
Data replication: click here
Python, A., Bender A., Illian, J., Blangiardo, M., Lin, Y., Liu, B., Lucas, T., Tan, Wen Y., Svanidze, D., and Yin., J. A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2021. DOI: 10.1111/rssa.12738.
Paper: click here
Lucas, Tim & Nandi, Anita & Chestnutt, Elisabeth & Twohig, Katherine & Keddie, Suzanne & Collins, Emma & Howes, Rosalind & Nguyen, Michele & Rumisha, Susan & Python, Andre & Arambepola, Rohan & Bertozzi‐Villa, Amelia & Hancock, Penelope & Amratia, Punam & Battle, Katherine & Cameron, Ewan & Gething, Peter & Weiss, Daniel. Mapping malaria by sharing spatial information between incidence and prevalence data sets. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2021. DOI: 10.1111/rssc.12484.
Paper: click here
Python, A. Debunking Seven Terrorism Myths with Statistics. Statistical Reasoning in Science and Society. American Statistical Association and CRC Press. 2020. ISBN 9780367472245.
To order the book:
Routledge: click here
Amazon.com: click here
Books.google.com: click here
Python, A. What we know - and don't know - about terrorism. Significance Magazine. Published by the Royal Statistical Society (JRSS) and the American Statistical Association (ASA). 2020. DOI: 10.1111/1740-9713.01418.
Paper: click here
Python, A., Brandsch J., Illian, J., Jones-Todd, C., and Blangiardo, M. Statistics and Terrorism: Getting insights into terrorism lethality through Bayesian modeling. Wiley StatsRef: Statistics Reference Online. DOI: 10.1002/9781118445112.stat08250.
Paper: click here
Python, A., Illian, J., Jones-Todd, C., and Blangiardo, M. The deadly facets of terrorism. Significance Magazine. Published by the Royal Statistical Society (JRSS) and the American Statistical Association (ASA). 2019 (16) 28-31. DOI: 10.1111/j.1740-9713.2019.01300.x.
Paper: click here
Python, A., Illian, J., Jones-Todd, C., and Blangiardo, M. A Bayesian approach to modelling subnational spatial dynamics of worldwide non-state terrorism, 2010–2016. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2019 (182)1 323-344. DOI: 10.1111/rssa.12384.
Paper: click here
Replication code & data: click here
Python, A., Brandsch, J., and Tskhay, A. Provoking local ethnic violence–A global study on ethnic polarization and terrorist targeting. Political Geography. May 2017(58): 77-89. DOI: 10.1016/j.polgeo.2017.02.001.
Paper: click here
Replication code & data: click here
Python, A., Illian, J., Jones-Todd, C., and Blangiardo, M. Explaining the Lethality of Boko Haram’s Terrorist Attacks in Nigeria, 2009–2014: A Hierarchical Bayesian Approach. International Conference on Bayesian Statistics in Action. June 2016 231-239. DOI: 10.1007/978-3-319-54084-9_22.
Paper: click here
Replication code & data: click here
Python, A. and Brandsch. A Case Study of Spatial Analysis: Approaching a Research Question With Spatial Data. SAGE Research Methods Cases. 2019(58): 77-89. DOI: 10.4135/9781526467454.
Book chapter: click here
Rathmes, G., Rumisha, S. F., Lucas, T. C., Twohig, K. A., Python, A., Nguyen, M., Gibson H. S., Chestnutt E. G., Battle K. E., Humphreys G., Amratia P., Arambepola R., Bertozzi-Villa A., Hancock P., Millar J. J., Symons T. L., Bhatt S., Cameron E., Guerin P. J., Gething P. W. & Weiss D. J. (2020). Global estimation of anti-malarial drug effectiveness for the treatment of uncomplicated Plasmodium falciparum malaria 1991–2019. Malaria Journal. 2020. 19(1): 1-15. DOI: 10.1186/s12936-020-03446-8
Paper: click here
Lucas, T.C., Nandi, A., Nguyen, M., Rumisha, S., Battle, K.E., Howes, R.E., Hendriks, C., Python, A., Hancock, P., Cameron, E. and Gething, P. Improving disaggregation models of malaria incidence by ensembling non-linear models of prevalence. Spatial and Spatio-Temporal Epidemiology. 2020. DOI: 10.1016/j.sste.2020.100357.
Paper: click here
Zehua L., Fontana F., Python, A., T. H. Jouni, and Santos H. A. Microfluidics for production of particles: mechanism, methodology and applications. Small. 2019(1904673): 1-24. DOI: 10.1002/smll.201904673
Paper: click here
Hendriks C., Gibson H., Trett A., Python A., Weiss D., Vrieling A., Coleman, M., Gething P., Hancock P., and Moyes C. Mapping geospatial processes affecting the environmental fate of agricultural pesticides in Africa. Int. J. Environ. Res. Public Health. 2019 16(3523): 1–22. DOI: 10.3390/ijerph16193523.
Paper: click here
Liu, Zehua; Wang, Shiqi; Tapeinos, Christos; Torrieri, Giulia; Känkänen, Voitto; El-Sayed, Nesma; Python, Andre; Hirvonen, Jouni T; Santos, Hélder A; Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews. 2021.
Yu, Linfei; Leng, Guoyong; Python, Andre; Varying response of vegetation to sea ice dynamics over the Arctic. Science of The Total Environment (799). 2021.
Hall S., Illian J., Makuta I., McNabb K., Murray S., O’Hare B AM, Python, A. Zaidi SHI, Bar-Zeev N. Government Revenue and Child and Maternal Mortality. Open Economies Review. 2021 (9/12): 1–17. DOI: 10.1007/s11079-020-09597-0.
Paper: click here
Kozlowski, G., Rion, S., Python, A., and Riedo, S. Global conservation status assessment of the threatened aquatic plant genus Baldellia (Alismataceae): challenges and limitations. Biodiversity and conservation. August 2009 18(9): 2307-2325. DOI: 10.1007/s10531-009-9589-3.
Paper: click here
Replication code & data: please contact gregor.kozlowski(at)unifr.ch
Lucas, T., Redding, D., and Python A. Utility Functions for INLA, R Package: INLAutils. Version 0.0.7. (May 2018).
A number of utility functions for R-INLA. Additional diagnostic plots and support for 'ggplot2'. Step wise regression with 'INLA'. Species distribution models. A spatial leave-one-out cross validation based on R-INLA outputs and other helper functions.
Nandi A., Arambepola R., Lucas, T., and Python A. Disaggregation Modelling, R Package: disaggregation. Version 0.1.1. (December 2019).
Fits disaggregation regression models using 'TMB' ('Template Model Builder'). This package fits models when the response data are aggregated to polygon level but the predictor variables are at a higher resolution. These are an extension of regression models with spatial random fields.
Short video (5mn) with Chinese subtitles introducing papers published in JRSS (Series A) (2018) and Significance magazine (2019)