Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число. Таким образом, геометрическая прогрессия – это числовая последовательность заданная соотношениями
bn+1 =bn · q, где bn ≠ 0, q ≠ 0
q – знаменатель прогрессии
Формула n-го члена геометрической прогрессии
bn = b1 · q n-1
Характеристическое свойство геометрической прогрессии.
Числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего, в случае конечной последовательности), равен произведению предшествующего и последующего членов.
bn2 = bn-1 · b n+1