DETECTION
1) Konstantinou, K. I., Ayu Rahmalia, D., Nurfitriana, I., & Ichihara, M. (2022). Fast Identification of Volcanic Tremor and Lahar Signals during the 2009 Redoubt Eruption Using Permutation Entropy and Supervised Machine Learning. Seismological Society of America, 93(1), 435-443.
2) Lara, F., Lara-Cueva, R., Larco, J. C., Carrera, E. V., & León, R. (2021). A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano. Journal of Volcanology and Geothermal Research, 409, 107142.
CLASSIFICATION
1) Malfante, M., Dalla Mura, M., Métaxian, J. P., Mars, J. I., Macedo, O., & Inza, A. (2018). Machine learning for volcano-seismic signals: Challenges and perspectives. IEEE Signal Processing Magazine, 35(2), 20-30.
2) Falcin, A., Métaxian, J. P., Mars, J., Stutzmann, É., Komorowski, J. C., Moretti, R., ... & Lemarchand, A. (2021). A machine-learning approach for automatic classification of volcanic seismicity at La Soufrière Volcano, Guadeloupe. Journal of Volcanology and Geothermal Research, 411, 107151.
3) Titos, M., Bueno, A., García, L., Benítez, C., & Segura, J. C. (2019). Classification of isolated volcano-seismic events based on inductive transfer learning. IEEE Geoscience and Remote Sensing Letters, 17(5), 869-873.
4) Hibert, C., Provost, F., Malet, J. P., Maggi, A., Stumpf, A., & Ferrazzini, V. (2017). Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. Journal of Volcanology and Geothermal Research, 340, 130-142.
5) Maggi, A., Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P., & Amemoutou, A. (2017). Implementation of a multistation approach for automated event classification at Piton de la Fournaise volcano. Seismological Research Letters, 88(3), 878-891.
ERUPTION PRECURSORS
1) Dempsey, D. E., Cronin, S. J., Mei, S., & Kempa-Liehr, A. W. (2020). Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nature communications, 11(1), 1-8.
2) Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., & Brenguier, F. (2020). Machine learning reveals the seismic signature of eruptive behavior at Piton de la Fournaise volcano. Geophysical research letters, 47(3), e2019GL085523.
1) Anbazhagan, P., Srilakshmi, K. N., Bajaj, K., Moustafa, S. S., & Al-Arifi, N. S. (2019). Determination of seismic site classification of seismic recording stations in the Himalayan region using HVSR method. Soil Dynamics and Earthquake Engineering, 116, 304-316.
2) Enrico Paolucci, Enrico Lunedei, Dario Albarello, Application of the principal component analysis (PCA) to HVSR data aimed at the seismic characterization of earthquake prone areas, Geophysical Journal International, Volume 211, Issue 1, October 2017, Pages 650–662, https://doi.org/10.1093/gji/ggx325
3) Chen, C. T., Wen, K. L., & Huang, J. Y. (2020). Source location-dependency site response in the Taipei Basin of Taiwan by using HVSR analysis. Journal of Asian Earth Sciences, 191, 104223.
4) Thabet, M. (2019). Site-specific relationships between bedrock depth and HVSR fundamental resonance frequency using KiK-NET data from Japan. Pure and Applied Geophysics, 176(11), 4809-4831.
5) Zhu, C., Cotton, F., & Pilz, M. (2020). Detecting site resonant frequency using HVSR: Fourier versus response spectrum and the first versus the highest peak frequency. Bulletin of the Seismological Society of America, 110(2), 427-440.
6) Gallipoli, M. R., Mucciarelli, M., Gallicchio, S., Tropeano, M., & Lizza, C. (2004). Horizontal to vertical spectral ratio (HVSR) measurements in the area damaged by the 2002 Molise, Italy, earthquake. Earthquake Spectra, 20(1_suppl), 81-93.
7) Mucciarelli, M., Gallipoli, M. R., & Arcieri, M. (2003). The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings. Bulletin of the Seismological Society of America, 93(3), 1407-1412.
8) [Fundamental study] - Chávez-García, F. J., Sánchez, L. R., & Hatzfeld, D. (1996). Topographic site effects
9) Napolitano, F., Gervasi, A., La Rocca, M., Guerra, I., & Scarpa, R. (2018). Site effects in the Pollino region from the HVSR and polarization of seismic noise and earthquakes. Bulletin of the Seismological Society of America, 108(1), 309-321.
Relationship between Vs, Resonance Frequencies and Bedrock Depth
10) Parolai, S., Bormann, P., & Milkereit, C. (2002). New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the seismological society of America, 92(6), 2521-2527.
11)
1) Dahm, H. H., Gao, S. S., Kong, F., & Liu, K. H. (2017). Topography of the mantle transition zone discontinuities beneath Alaska and its geodynamic implications: constraints from receiver function stacking. Journal of Geophysical Research: Solid Earth, 122(12), 10-352.
2) Liu, K. H., Gao, S. S., Silver, P. G., & Zhang, Y. (2003). Mantle layering across central South America. Journal of Geophysical Research: Solid Earth, 108(B11). [Good explanation of Bootstrap sampling and Moveout calculation]
3) Kong, F., Gao, S. S., Liu, K. H., Ding, W., & Li, J. (2020). Slab dehydration and mantle upwelling in the vicinity of the Sumatra subduction zone: Evidence from receiver function imaging of mantle transition zone discontinuities. Journal of Geophysical Research: Solid Earth, 125(9), e2020JB019381.
4) Van Stiphout, A. M., Cottaar, S., & Deuss, A. (2019). Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3-D velocity corrections. Geophysical journal international, 219(2), 1432-1446.
5) Deuss, A., & Woodhouse, J. (2001). Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science, 294(5541), 354-357.
6) Deuss, A., Redfern, S. A., Chambers, K., & Woodhouse, J. H. (2006). The nature of the 660-kilometer discontinuity in Earth's mantle from global seismic observations of PP precursors. Science, 311(5758), 198-201.
7) Thomas, C., & Billen, M. I. (2009). Mantle transition zone structure along a profile in the SW Pacific: thermal and compositional variations. Geophysical Journal International, 176(1), 113-125.
8) Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I. W., Huerta, A. D., ... & Winberry, J. P. (2016). Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. Journal of Geophysical Research: Solid Earth, 121(3), 1758-1775.
9) Ramirez, C., Nyblade, A., Hansen, S. E., Wiens, D. A., Anandakrishnan, S., Aster, R. C., ... & Wilson, T. (2016). Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow. Geophysical Journal International, 204(3), 1636-1648.
10) Cottaar, S., & Deuss, A. (2016). Large‐scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting slabs. Journal of Geophysical Research: Solid Earth, 121(1), 279-292.
11) Ita, J., & Stixrude, L. (1992). Petrology, elasticity, and composition of the mantle transition zone. Journal of Geophysical Research: Solid Earth, 97(B5), 6849-6866.
12) Ito, E., & Katsura, T. (1989). A temperature profile of the mantle transition zone. Geophysical Research Letters, 16(5), 425-428.
13) Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International, 194(1), 417-449.
14) Houser, C. (2016). Global seismic data reveal little water in the mantle transition zone. Earth and Planetary Science Letters, 448, 94-101.
15) Gao, S. S., & Liu, K. H. (2014). Mantle transition zone discontinuities beneath the contiguous United States. Journal of Geophysical Research: Solid Earth, 119(8), 6452-6468.
16) Gao, S. S., Silver, P. G., Liu, K. H., & Kaapvaal Seismic Group. (2002). Mantle discontinuities beneath southern Africa. Geophysical Research Letters, 29(10), 129-1.
17) Liu, K. H., Gao, S. S., Gao, Y., & Wu, J. (2008). Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research: Solid Earth, 113(B1).
18) Gao, S. S., & Liu, K. H. (2014). Imaging mantle discontinuities using multiply-reflected P-to-S conversions. Earth and Planetary Science Letters, 402, 99-106.
19) Jenkins, J., Cottaar, S., White, R. S., & Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity?. Earth and Planetary Science Letters, 433, 159-168.
20) Gurrola, H., & Minster, J. B. (1998). Thickness estimates of the upper-mantle transition zone from bootstrapped velocity spectrum stacks of receiver functions. Geophysical Journal International, 133(1), 31-43.
21) Duan, Y., Tian, X., Liang, X., Li, W., Wu, C., Zhou, B., & Iqbal, J. (2017). Subduction of the Indian slab into the mantle transition zone revealed by receiver functions. Tectonophysics, 702, 61-69.
22) Agius, M. R., Rychert, C. A., Harmon, N., & Laske, G. (2017). Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth and Planetary Science Letters, 474, 226-236.
23) Zhang, R., Gao, Z., Wu, Q., Xie, Z., & Zhang, G. (2016). Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean craton from P-wave receiver functions. Tectonophysics, 675, 159-167.
24) Lombardi, D., Braunmiller, J., Kissling, E., & Giardini, D. (2009). Alpine mantle transition zone imaged by receiver functions. Earth and Planetary Science Letters, 278(3-4), 163-174.
25) Gilbert, H. J., Sheehan, A. F., Dueker, K. G., & Molnar, P. (2003). Receiver functions in the western United States, with implications for upper mantle structure and dynamics. Journal of Geophysical Research: Solid Earth, 108(B5).
26) Wang, X., & Niu, F. (2011). Imaging the mantle transition zone beneath eastern and central China with CEArray receiver functions. Earthquake Science, 24(1), 65-75.
27) Maguire, R., Ritsema, J., & Goes, S. (2018). Evidence of subduction‐related thermal and compositional heterogeneity below the United States from transition zone receiver functions. Geophysical Research Letters, 45(17), 8913-8922.
28) Li, X., & Yuan, X. (2003). Receiver functions in northeast China–implications for slab penetration into the lower mantle in northwest Pacific subduction zone. Earth and Planetary Science Letters, 216(4), 679-691.
29) Owens, T. J., Nyblade, A. A., Gurrola, H., & Langston, C. A. (2000). Mantle transition zone structure beneath Tanzania, East Africa. Geophysical Research Letters, 27(6), 827-830.
30) Ozacar, A. A., Gilbert, H., & Zandt, G. (2008). Upper mantle discontinuity structure beneath East Anatolian Plateau (Turkey) from receiver functions. Earth and Planetary Science Letters, 269(3-4), 427-435.
31) Kraft, H. A., Vinnik, L., & Thybo, H. (2018). Mantle transition zone beneath central-eastern Greenland: Possible evidence for a deep tectosphere from receiver functions. Tectonophysics, 728, 34-40.
32) Geissler, W. H., Kind, R., & Yuan, X. (2008). Upper mantle and lithospheric heterogeneities in central and eastern Europe as observed by teleseismic receiver functions. Geophysical Journal International, 174(1), 351-376.
33) Shen, X., Zhou, H., & Kawakatsu, H. (2008). Mapping the upper mantle discontinuities beneath China with teleseismic receiver functions. Earth, planets and space, 60(7), 713-719.
34) Shen, X., Yuan, X., & Li, X. (2014). A ubiquitous low‐velocity layer at the base of the mantle transition zone. Geophysical Research Letters, 41(3), 836-842.
35) Farra, V., & Vinnik, L. (2000). Upper mantle stratification by P and S receiver functions. Geophysical Journal International, 141(3), 699-712.
36) BAI, Y., AI, Y., JIANG, M., HE, Y., & CHEN, Q. (2018). Structure of the mantle transition zone beneath the southeastern Tibetan plateau revealed by P-wave receiver functions. Chinese Journal of Geophysics, 61(2), 570-583.
37) Huerta, A. D., Nyblade, A. A., & Reusch, A. M. (2009). Mantle transition zone structure beneath Kenya and Tanzania: more evidence for a deep-seated thermal upwelling in the mantle. Geophysical Journal International, 177(3), 1249-1255.
38) Mulibo, G. D., & Nyblade, A. A. (2013). Mantle transition zone thinning beneath eastern Africa: Evidence for a whole‐mantle superplume structure. Geophysical Research Letters, 40(14), 3562-3566.
39) Huang, H., Tosi, N., Chang, S. J., Xia, S., & Qiu, X. (2015). Receiver function imaging of the mantle transition zone beneath the S outh C hina B lock. Geochemistry, Geophysics, Geosystems, 16(10), 3666-3678.
40) Fee, D., & Dueker, K. (2004). Mantle transition zone topography and structure beneath the Yellowstone hotspot. Geophysical Research Letters, 31(18).
41) Saul, J., Kumar, M. R., & Sarkar, D. (2000). Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver functions. Geophysical Research Letters, 27(16), 2357-2360.
42) Deng, K., & Zhou, Y. (2015). Wave diffraction and resolution of mantle transition zone discontinuities in receiver function imaging. Geophysical Journal International, 201(3), 2008-2025.
43) Zhou, Y. (2018). Anomalous mantle transition zone beneath the Yellowstone hotspot track. Nature Geoscience, 11(6), 449-453.
44) Tonegawa, T., Hirahara, K., Shibutani, T., Iwamori, H., Kanamori, H., & Shiomi, K. (2008). Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth and Planetary Science Letters, 274(3-4), 346-354.
45) Agius, M. R., Rychert, C. A., Harmon, N., Tharimena, S., & Kendall, J. (2021). A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature, 589(7843), 562-566.
46) Sun, M., Gao, S. S., Liu, K. H., & Fu, X. (2020). Upper mantle and mantle transition zone thermal and water content anomalies beneath NE Asia: Constraints from receiver function imaging of the 410 and 660 km discontinuities. Earth and Planetary Science Letters, 532, 116040.
47) Ai, Y., Zheng, T., Xu, W., He, Y., & Dong, D. (2003). A complex 660 km discontinuity beneath northeast China. Earth and Planetary Science Letters, 212(1-2), 63-71.
48) Helffrich, G. (2000). Topography of the transition zone seismic discontinuities. Reviews of Geophysics, 38(1), 141-158.
49) Gu, Y., Dziewonski, A. M., & Agee, C. B. (1998). Global de-correlation of the topography of transition zone discontinuities. Earth and Planetary Science Letters, 157(1-2), 57-67.
50) Gossler, J., & Kind, R. (1996). Seismic evidence for very deep roots of continents. Earth and Planetary Science Letters, 138(1-4), 1-13
51) Schmerr, N., & Garnero, E. (2006). Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors. Journal of Geophysical Research: Solid Earth, 111(B8).
52) Ringwood, A. E. (1968). Phase transformations in the mantle. Earth and Planetary Science Letters, 5, 401-412.
53) Shearer, P. M., & Masters, T. G. (1992). Global mapping of topography on the 660-km discontinuity. Nature, 355(6363), 791-796.
54) Karato, S. I., Forte, A., Liebermann, R., Masters, G., & Stixrude, L. (2000). Earth's deep interior: mineral physics and tomography from the atomic to the global scale. Washington DC American Geophysical Union Geophysical Monograph Series, 117.
55) Grand, S. P., Van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the Earth. GSA today, 7(4), 1-7.
56) Vinnik, L. P. (1977). Detection of waves converted from P to SV in the mantle. Physics of the Earth and planetary interiors, 15(1), 39-45.
57) Yu, Y., Gao, S. S., Liu, K. H., Yang, T., Xue, M., & Le, K. P. (2017). Mantle transition zone discontinuities beneath the Indochina Peninsula: Implications for slab subduction and mantle upwelling. Geophysical Research Letters, 44(14), 7159-7167.
58) Anderson, D. L. (1967). Phase changes in the upper mantle. Science, 157(3793), 1165-1173.
59) Collier, J. D., Helffrich, G. R., & Wood, B. J. (2001). Seismic discontinuities and subduction zones. Physics of the Earth and Planetary Interiors, 127(1-4), 35-49.
60) Ghosh, S., Ohtani, E., Litasov, K. D., Suzuki, A., Dobson, D., & Funakoshi, K. (2013). Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth and Planetary Science Letters, 371, 103-111.
61) Gurrola, H., Minster, J. B., & Owens, T. (1994). The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophysical Journal International, 117(2), 427-440.
62) Dueker, K. G., & Sheehan, A. F. (1998). Mantle discontinuity structure beneath the Colorado Rocky Mountains and high plains. Journal of Geophysical Research: Solid Earth, 103(B4), 7153-7169.
63) Li, A., Fischer, K. M., Wysession, M. E., & Clarke, T. J. (1998). Mantle discontinuities and temperature under the North American continental keel. Nature, 395(6698), 160-163.
64) Sun, M., Fu, X., Liu, K. H., & Gao, S. S. (2018). Absence of thermal influence from the African Superswell and cratonic keels on the mantle transition zone beneath southern Africa: Evidence from receiver function imaging. Earth and Planetary Science Letters, 503, 108-117.
65) Tauzin, B., van der Hilst, R. D., Wittlinger, G., & Ricard, Y. (2013). Multiple transition zone seismic discontinuities and low velocity layers below western United States. Journal of Geophysical Research: Solid Earth, 118(5), 2307-2322.
66) O'Reilly, S. Y., and W. L. Griffin (2010), The continental lithosphere-asthenosphere boundary: Can we sample it?, Lithos, 120, 1–13, doi:10.1016/j.lithos.2010.03.016.
67) [Global Survey of MTZ Thickness and Travel Times] Chevrot, S., Vinnik, L., & Montagner, J. P. (1999). Global‐scale analysis of the mantle Pds phases. Journal of Geophysical Research: Solid Earth, 104(B9), 20203-20219.
India
68) [DVP] Kumar, M. R., & Mohan, G. (2005). Mantle discontinuities beneath the Deccan volcanic province. Earth and Planetary Science Letters, 237(1-2), 252-263.
69) [Dharwar Craton] Kiselev, S., Vinnik, L., Oreshin, S., Gupta, S., Rai, S. S., Singh, A., ... & Mohan, G. (2008). Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophysical Journal International, 173(3), 1106-1118.
70) [Most of the cratonic India] Kosarev, G. L., Oreshin, S. I., Vinnik, L. P., Kiselev, S. G., Dattatrayam, R. S., Suresh, G., & Baidya, P. R. (2013). Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent. Tectonophysics, 592, 175-186.
71) [Whole India] Kumar, M. R., Saikia, D., Singh, A., Srinagesh, D., Baidya, P. R., & Dattatrayam, R. S. (2013). Low shear velocities in the sub‐lithospheric mantle beneath the Indian shield?. Journal of Geophysical Research: Solid Earth, 118(3), 1142-1155.
72) [As the name suggests] Oreshin, S. I., Vinnik, L. P., Kiselev, S. G., Rai, S. S., Prakasam, K. S., & Treussov, A. V. (2011). Deep seismic structure of the Indian shield, western Himalaya, Ladakh and Tibet. Earth and Planetary Science Letters, 307(3-4), 415-429.
73) [Low resolution N-S profile] Rai, S. S., Suryaprakasam, K., & Gaur, V. K. (2009). Seismic imaging of the mantle discontinuities beneath India: from Archean cratons to Himalayan subduction zone. In Physics and Chemistry of the Earth’s Interior (pp. 153-161). Springer, New York, NY.
74) [Northeast India] Ramesh, D. S., Ravi Kumar, M., Uma Devi, E., Solomon Raju, P., & Yuan, X. (2005). Moho geometry and upper mantle images of northeast India. Geophysical Research Letters, 32(14).
75) [NW China/Tibet] - He, C., Santosh, M., Chen, X., & Li, X. (2014). Crustal growth and tectonic evolution of the Tianshan orogenic belt, NW China: a receiver function analysis. Journal of Geodynamics, 75, 41-52.
76) [Godavari Rift] - Singh, A., Kumar, M. R., Kumar, N., Saikia, D., Raju, P. S., Srinagesh, D., ... & Sarkar, D. (2012). Seismic signatures of an altered crust and a normal transition zone structure beneath the Godavari rift. Precambrian Research, 220, 1-8.
77) [Southeast India] - Sharma, S. D., & Ramesh, D. S. (2013). Imaging mantle lithosphere for diamond prospecting in southeast India. Lithosphere, 5(4), 331-342.
78) Northeast India and Tibet - Singh, A., & Kumar, M. R. (2009). Seismic signatures of detached lithospheric fragments in the mantle beneath eastern Himalaya and southern Tibet. Earth and Planetary Science Letters, 288(1-2), 279-290.
Effect of Water
78) Smyth, J. R., & Frost, D. J. (2002). The effect of water on the 410‐km discontinuity: An experimental study. Geophysical Research Letters, 29(10), 123-1.
79) Wood, B. J. (1995). The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268(5207), 74-76.
80) Van der Meijde, M., Marone, F., Giardini, D., & Van der Lee, S. (2003). Seismic evidence for water deep in Earth's upper mantle. Science, 300(5625), 1556-1558.
81) [520 Km in wet mantle] Inoue, T., Weidner, D. J., Northrup, P. A., & Parise, J. B. (1998). Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth and Planetary Science Letters, 160(1-2), 107-113.
82) [Nice Geophysical study] Huang, X., Xu, Y., & Karato, S. I. (2005). Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434(7034), 746-749.
83) Frazer, W. D., & Park, J. (2021). Seismic Evidence of Mid‐Mantle Water Transport Beneath the Yellowstone Region. Geophysical Research Letters, 48(20), e2021GL095838.
86) Han, G., Li, J., Guo, G., Mooney, W. D., Karato, S. I., & Yuen, D. A. (2021). Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics. Earth and Planetary Science Letters, 554, 116642.
87) Liu, Z., Park, J., & Karato, S. I. (2016). Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophysical Research Letters, 43(6), 2480-2487.
88) Liu, Z., Park, J., & Karato, S. I. (2018). Seismic evidence for water transport out of the mantle transition zone beneath the European Alps. Earth and Planetary Science Letters, 482, 93-104.
89) Zhang, Z., Dueker, K. G., & Huang, H. H. (2018). Ps mantle transition zone imaging beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous mantle. Earth and Planetary Science Letters, 492, 197-205.
410 km
90) Smyth, J. R., & Frost, D. J. (2002). The effect of water on the 410‐km discontinuity: An experimental study. Geophysical Research Letters, 29(10), 123-1.
91) Helffrich, G. R., & Wood, B. J. (1996). 410 km discontinuity sharpness and the form of the olivine α-β phase diagram: resolution of apparent seismic contradictions. Geophysical Journal International, 126(2), F7-F12.
92) Chambers, K., Woodhouse, J. H., & Deuss, A. (2005). Topography of the 410-km discontinuity from PP and SS precursors. Earth and Planetary Science Letters, 235(3-4), 610-622.
93) Chambers, K., Deuss, A., & Woodhouse, J. H. (2005). Reflectivity of the 410‐km discontinuity from PP and SS precursors. Journal of Geophysical Research: Solid Earth, 110(B2).
660 km
94) Hirose, K. (2002). Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research: Solid Earth, 107(B4), ECV-3.
95) Deuss, A., Redfern, S. A., Chambers, K., & Woodhouse, J. H. (2006). The nature of the 660-kilometer discontinuity in Earth's mantle from global seismic observations of PP precursors. Science, 311(5758), 198-201.
96) Jenkins, J., Cottaar, S., White, R. S., & Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity?. Earth and Planetary Science Letters, 433, 159-168.
97) Andrews, J., & Deuss, A. (2008). Detailed nature of the 660 km region of the mantle from global receiver function data. Journal of Geophysical Research: Solid Earth, 113(B6).
98) Effect of water on the d660 - Muir, J. M., Zhang, F., & Brodholt, J. P. (2021). The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone. Earth and Planetary Science Letters, 565, 116909.
99) Wu, W., Ni, S., & Irving, J. C. (2019). Inferring Earth’s discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428), 736-740.
100) Ishii, T., Huang, R., Fei, H., Koemets, I., Liu, Z., Maeda, F., ... & Katsura, T. (2018). Complete agreement of the post-spinel transition with the 660-km seismic discontinuity. Scientific reports, 8(1), 1-6.
520 km
83) Shearer, P. M. (1996). Transition zone velocity gradients and the 520‐km discontinuity. Journal of Geophysical Research: Solid Earth, 101(B2), 3053-3066.
84) Deuss, A., & Woodhouse, J. (2001). Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science, 294(5541), 354-357.
85) Saikia, A., Frost, D. J., & Rubie, D. C. (2008). Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869), 1515-1518.
101) Tian, D., Lv, M., Wei, S. S., Dorfman, S. M., & Shearer, P. M. (2020). Global variations of Earth's 520-and 560-km discontinuities. Earth and Planetary Science Letters, 552, 116600.
Low velocity Layer atop 410 km.
Wei, S. S., & Shearer, P. M. (2017). A sporadic low‐velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. Journal of Geophysical Research: Solid Earth, 122(7), 5144-5159.
1) Reciever Function Computation - Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749-4762.
Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin-Seismological Society of America, 81(6), 2504-2510.
2) Iterative time domain deconvolution - Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the seismological Society of America, 89(5), 1395-1400.
3) Water Level deconvolution - Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), 15303-15318.
4) Water Level Deconvolution - Clayton, R. W., & Wiggins, R. A. (1976). Source shape estimation and deconvolution of teleseismic bodywaves. Geophysical Journal International, 47(1), 151-177.
5) Bodin, T., H. Yuan, and B. Romanowicz (2013), Inversion of receiver functions without deconvolution—Application to the Indian craton, Geophys. J. Int., 196, 1025–1033, doi:10.1093/gji/ggt431.
6) Garhwal Himalaya - Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., & Rai, S. S. (2013). Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters, 367, 15-27.
1) Tonegawa, T., Araki, E., Matsumoto, H., Kimura, T., Obana, K., Fujie, G., ... & Kodaira, S. Extraction of P wave from ambient seafloor noise observed by distributed acoustic sensing. Geophysical Research Letters, e2022GL098162.
2) Zhou, Z., Wiens, D., Shen, W., Aster, R. C., & Nyblade, A. (2020, December). Radial Anisotropy and sediment thickness of West and Central Antarctica estimated from Rayleigh and Love wave velocities. In AGU Fall Meeting Abstracts (Vol. 2020, pp. T010-0012).
3) Fundamental study - Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 3011-3017.
4) Fundamental study - Derode, A., Larose, E., Campillo, M., & Fink, M. (2003). How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Applied Physics Letters, 83(15), 3054-3056.
5) Fundamental study - Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Extracting time‐domain Green's function estimates from ambient seismic noise. Geophysical research letters, 32(3).
6) Fundamental study - Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618.
7) Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical journal international, 169(3), 1239-1260.
8) Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).
9) Moschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8).
10) Yang, Y., Ritzwoller, M. H., Lin, F. C., Moschetti, M. P., & Shapiro, N. M. (2008). Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research: Solid Earth, 113(B12).
11) Levshin, A. L., Schweitzer, J., Weidle, C., Shapiro, N. M., & Ritzwoller, M. H. (2007). Surface wave tomography of the Barents Sea and surrounding regions. Geophysical Journal International, 170(1), 441-459.
12) Mordret, A., Landès, M., Shapiro, N. M., Singh, S. C., & Roux, P. (2014). Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm. Geophysical Journal International, 198(3), 1514-1525.
13) NM, S., AV, G., Gordeev, E., & Dominguez, J. (2000). Average shear-wave velocity structure of the Kamchatka peninsula from the dispersion of surface waves. Earth, planets and space, 52(9), 573-577.
14) [Fundamental Study] - Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical journal international, 169(3), 1239-1260.
For the use in our Fort Greely Paper where we are limited to be only able to analyze the dispersion curves!
15) [Imaging subsurface from Traffic Noise] Chang, J. P., de Ridder, S. A., & Biondi, B. L. (2016). High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California. Geophysics, 81(2), B43-B
16) [Literature review of surface wave velocity computation methods] -Petr Kolínský, Götz Bokelmann, the AlpArray Working Group, On the wobbles of phase-velocity dispersion curves, Geophysical Journal International, Volume 224, Issue 3, March 2021, Pages 1477–1504, https://doi.org/10.1093/gji/ggaa487
17) [Useful for Fort Greely] Muhumuza, K. (2020). A feasibility study on monitoring crustal structure variations by direct comparison of surface wave dispersion curves from ambient seismic noise. International Journal of Geophysics, 2020.
18) Fan-Chi Lin, Morgan P. Moschetti, Michael H. Ritzwoller, Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophysical Journal International, Volume 173, Issue 1, April 2008, Pages 281–298, https://doi.org/10.1111/j.1365-246X.2008.03720.x
1) Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091), 777-793.
2) Brenguier, F., Clarke, D., Aoki, Y., Shapiro, N. M., Campillo, M., & Ferrazzini, V. (2011). Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience, 343(8-9), 633-638.
3) McNamara, D. E., & Buland, R. P. (2004). Ambient noise levels in the continental United States. Bulletin of the seismological society of America, 94(4), 1517-1527.
4) McNamara, D. E., Buland, R. P., Boaz, R. I., Weertman, B., Ahern, T., & McNamara, D. E. (2004). Ambient seismic noise. www. mcnamara@ usgs. gov.
5) Wolin, E., & McNamara, D. E. (2020). Establishing High‐Frequency Noise Baselines to 100 Hz Based on Millions of Power Spectra from IRIS MUSTANGEstablishing High‐Frequency Noise Baselines to 100 Hz Based on Millions of Power Spectra from IRIS MUSTANG. Bulletin of the Seismological Society of America, 110(1), 270-278.
6) [MSNoise] - Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise. Seismological Research Letters, 85(3), 715-726.
7) Díaz, J., DeFelipe, I., Ruiz, M. et al. Identification of natural and anthropogenic signals in controlled source seismic experiments. Sci Rep 12, 3171 (2022). https://doi.org/10.1038/s41598-022-07028-3
8) [Spatial Resolution of CCF] - Hadziioannou, C., Larose, E., Baig, A., Roux, P., & Campillo, M. (2011). Improving temporal resolution in ambient noise monitoring of seismic wave speed. Journal of Geophysical Research: Solid Earth, 116(B7).
9)
Columbia Glacier
1) Walter, F., O'Neel, S., McNamara, D., Pfeffer, W. T., Bassis, J. N., & Fricker, H. A. (2010). Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophysical Research Letters, 37(15).
2) O'Neel, S., & Pfeffer, W. T. (2007). Source mechanics for monochromatic icequakes produced during iceberg calving at Columbia Glacier, AK. Geophysical Research Letters, 34(22).
3) Qamar, A. (1988). Calving icebergs: A source of low‐frequency seismic signals from Columbia Glacier, Alaska. Journal of Geophysical Research: Solid Earth, 93(B6), 6615-6623.
1) Tonegawa, T., Araki, E., Matsumoto, H., Kimura, T., Obana, K., Fujie, G., ... & Kodaira, S. Extraction of P wave from ambient seafloor noise observed by distributed acoustic sensing. Geophysical Research Letters, e2022GL098162.
2)
1) Dong, L., Wesseloo, J., Potvin, Y., & Li, X. (2016). Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression. Rock Mechanics and Rock Engineering, 49(1), 183-211.
2) Gulia, L. (2010). Detection of quarry and mine blast contamination in European regional catalogues. Natural hazards, 53(2), 229-249.
3) Malovichko, D. (2012). Discrimination of blasts in mine seismology. In Deep Mining 2012: Proceedings of the Sixth International Seminar on Deep and High Stress Mining (pp. 161-172). Australian Centre for Geomechanics.
4) Dong L, Li X, Xie G (2014b) Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification. Abstr Appl Anal 2014:1–8, Article ID 459317
5) Arrowsmith SJ, Arrowsmith MD, Hedlin MA, Stump B (2006) Discrimination of delay-fired mine blasts in Wyoming using an automatic time-frequency discriminant. Bull Seismol Soc Am 96(6):2368–2382
6) Booker A, Mitronovas W (1964) An application of statistical discrimination to classify seismic events. Bull Seismol Soc Am 54(3):961–971
7) Taylor SR (1996) Analysis of high-frequency Pg/Lg ratios from NTS explosions and western US earthquakes. Bull Seismol Soc Am 86(4):1042–1053
8) Kim W-Y, Aharonian V, Lerner-Lam A, Richards P (1997) Discrimination of earthquakes and explosions in southern Russia using regional high-frequency three-component data from the IRIS/JSP Caucasus network. Bull Seismol Soc Am 87(3):569–588
9) Wüster J (1993) Discrimination of chemical explosions and earthquakes in central Europe—a case study. Bull Seismol Soc Am 83(4):1184–1212
Machine Learning
10) [Neural Network] Del Pezzo E, Esposito A, Giudicepietro F, Marinaro M, Martini M, Scarpetta S (2003) Discrimination of earthquakes and underwater explosions using neural networks. Bull Seismol Soc Am 93(1):215–223
11) [Neural Network] Dowla FU, Taylor SR, Anderson RW (1990) Seismic discrimination with artificial neural networks: preliminary results with regional spectral data. Bull Seismol Soc Am 80(5):1346–1373
12) Ford SR, Walter WR (2010) Aftershock characteristics as a means of discriminating explosions from earthquakes. Bull Seismol Soc Am 100(1):364–376
13) Kuyuk H, Yildirim E, Dogan E, Horasan G (2011) An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul. Nat Hazards Earth Syst Sci 11(1):93–100
14) Musil M, Plešinger A (1996) Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps. Bull Seismol Soc Am 86(4):1077–1090
15) Tiira T (1996) Discrimination of nuclear explosions and earthquakes from teleseismic distances with a local network of short period seismic stations using artificial neural networks. Phys Earth Planet Inter 97(1):247–268
16) Ursino A, Langer H, Scarfì L, Di Grazia G, Gresta S (2001) Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily). Ann Geophys 44(4):703–722
17) Vallejos J, McKinnon S (2013) Logistic regression and neural network classification of seismic records. Int J Rock Mech Min Sci 62:86–95
18) Yıldırım E, Gülbağ A, Horasan G, Doğan E (2011) Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques. Comput Geosci 37(9):1209–1217
19) Kortström, J., Uski, M., & Tiira, T. (2016). Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 87, 22-30.
20) Kong, Q., Wang, R., Walter, W. R., Pyle, M., Koper, K., & Schmandt, B. (2022). Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination. arXiv preprint arXiv:2203.06347.
21) Hammer, C., Ohrnberger, M., & Fäh, D. (2013). Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophysical Journal International, 192(1), 425-439.
1) Bootstrap Computation - Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
2) Fast Fourier Transform - Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of computation, 19(90), 297-301.
3) Correlation Coefficient - https://www.geeksforgeeks.org/python-pearson-correlation-test-between-two-variables/
1) [Create 3D plots and Maps] Rayshader - https://www.rayshader.com/
1) Ritsema, J., and H. van Heijst (2000), New seismic model of the upper mantle beneath Africa, Geology, 28, 63–66.
2) Fishwick, S., B. L. N. Kennett, and A. M. Reading (2005), Contrasts in lithospheric structure within the Australian craton insights from surface wave tomography, Earth Planet. Sci. Lett., 231, 163–176.
3) van der Lee, S., and A. Frederiksen (2005), Surface wave tomography applied to the North American upper mantle, in Seismic Earth: Array Analysis of Broadband Seismograms, Geophys. Monogr. Ser., vol. 157, edited by A. Levander and G. Nolet, pp. 67–80, AGU, Washington, D. C.
4)
1) Rösler, B., & Stein, S. (2022). Consistency of Non‐Double‐Couple Components of Seismic Moment Tensors with Earthquake Magnitude and Mechanism. Seismological Research Letters.
2) Peng, H., Mori, J. Characteristics of the foreshock occurrence for Mj3.0 to 7.2 shallow onshore earthquakes in Japan. Earth Planets Space 74, 40 (2022). https://doi.org/10.1186/s40623-021-01567-1
3) Li, B., Wu, B., Bao, H., Oglesby, D. D., Ghosh, A., Gabriel, A. A., ... & Chu, R. Rupture heterogeneity and directivity effects in back‐projection analysis. Journal of Geophysical Research: Solid Earth, e2021JB022663.
4)
1) Envelope Functions - https://ds.iris.edu/ds/products/envelopefunctions/
2) Western US Ambient Noise Cross Correlations - https://ds.iris.edu/ds/products/ancc-ciei/
1) Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90(1), 3-14.
2) Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., ... & Soto, H. (2021). SeisBench--A Toolbox for Machine Learning in Seismology. arXiv preprint arXiv:2111.00786.
3) Jiao, P., & Alavi, A. H. (2020). Artificial intelligence in seismology: advent, performance and future trends. Geoscience Frontiers, 11(3), 739-744.
4) Beroza, G. C., Segou, M., & Mostafa Mousavi, S. (2021). Machine learning and earthquake forecasting—next steps. Nature communications, 12(1), 1-3.
5) Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.
Random Forest Algorithm
6) Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine learning predicts laboratory earthquakes. Geophysical Research Letters, 44(18), 9276-9282.
7) Trugman, D. T., & Shearer, P. M. (2018). Strong correlation between stress drop and peak ground acceleration for recent M 1–4 earthquakes in the San Francisco Bay area. Bulletin of the Seismological Society of America, 108(2), 929-945.
8) Hibert, C., Provost, F., Malet, J. P., Maggi, A., Stumpf, A., & Ferrazzini, V. (2017). Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. Journal of Volcanology and Geothermal Research, 340, 130-142.
9) Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.
10) Maggi, A., Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P., & Amemoutou, A. (2017). Implementation of a multistation approach for automated event classification at Piton de la Fournaise volcano. Seismological Research Letters, 88(3), 878-891.
11) Aden‐Antoniów, F., Frank, W. B., & Seydoux, L. (2022). An Adaptable Random Forest Model for the Declustering of Earthquake Catalogs. Journal of Geophysical Research: Solid Earth, 127(2), e2021JB023254.
12) Heyi, L., Jindong, S., Yongxiang, W., & Shanyou, L. I. (2022, February). Identification of earthquakes and microtremors based on a combined model of generative adversarial network and random forest. In SEG 2021 Workshop: 4th International Workshop on Mathematical Geophysics: Traditional & Learning, Virtual, 17–19 December 2021 (pp. 33-36). Society of Exploration Geophysicists.
13) Saad, O. M., Chen, Y., Trugman, D., Soliman, M. S., Samy, L., Savvaidis, A., ... & Chen, Y. (2022). Machine learning for fast and reliable source-location estimation in earthquake early warning. IEEE Geoscience and Remote Sensing Letters.
14) Abi Nader, A., Albaric, J., Hibert, C., Malet, J. P., & Steinmann, M. (2021, November). Underground River Monitoring from Seismic Waves with a Random Forest Algorithm. In 5èmes Rencontres Scientifiques et Techniques Résif.
15) Renouard, A., Maggi, A., Grunberg, M., Doubre, C., & Hibert, C. (2021). Toward False Event Detection and Quarry Blast versus Earthquake Discrimination in an Operational Setting Using Semiautomated Machine Learning. Seismological Society of America, 92(6), 3725-3742.
16) Dong L, Li X, Xie G (2014b) Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification. Abstr Appl Anal 2014:1–8, Article ID 459317
UPPER MANTLE
1) Singh, A., Mercier, J. P., Ravi Kumar, M., Srinagesh, D., & Chadha, R. K. (2014). Continental scale body wave tomography of India: evidence for attrition and preservation of lithospheric roots. Geochemistry, Geophysics, Geosystems, 15(3), 658-675.
2) Van der Voo, R., Spakman, W., & Bijwaard, H. (1999). Tethyan subducted slabs under India. Earth and Planetary Science Letters, 171(1), 7-20.
3) Saul, J., Kumar, M. R., & Sarkar, D. (2000). Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver functions. Geophysical Research Letters, 27(16), 2357-2360.
4) Iyer, H. M., Gaur, V. K., Rai, S. S., Ramesh, D. S., Rao, C. V. R., Srinagesh, D., & Suryaprakasam, K. (1989). High velocity anomaly beneath the Deccan volcanic province: evidence from seismic tomography. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 98(1), 31-60
5) Srinagesh, D., Rai, S. S., Ramesh, D. S., Gaur, V. K., & Rao, C. V. R. (1989). Evidence for thick continental roots beneath South Indian Shield. Geophysical Research Letters, 16(9), 1055-1058.
6) Rai, S. S. (1992). Seismic tomography of the south Indian shield. Current Sci., 62, 213-226.
7) Kennett, B. L. N., & Widiyantoro, S. (1999). A low seismic wavespeed anomaly beneath northwestern India: a seismic signature of the Deccan plume?. Earth and Planetary Science Letters, 165(1), 145-155.
8) Ramesh, D. S., D. Srinagesh, S. S. Rai, K. S. Prakasam, and V. K. Gaur (1993), High-velocity anomaly under the Deccan Volcanic Province, Phys. Earth Planet. Sci., 77, 285–296.
9) Patro, P. K., and S. V. S. Sarma (2009), Lithospheric electrical imaging of the Deccan trap covered region of western India, J. Geophys. Res., 114, B01102, doi:10.1029/2007JB005572.
10) Zhou, H., and M. A. Murphy (2005), Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau, J. Asian Earth Sci., 25, 445–457.
11) Li, C., R. D. van der Hilst, A. S. Meltzer, and E. R. Engdahl (2008), Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth Planet. Sci. Lett., 274, 157–168, doi:10.1016/j.epsl.2008.07.016.
12) Kumar, P., X. Yuan, M. R. Kumar, R. Kind, L. Xuequing, and R. K. Chadha (2007), The rapid drift of the Indian tectonic plate, Nature, 449, 894–897.
13) Mitra, S., K. Priestley, V. K. Gaur, S. S. Rai, and J. Haines (2006), Variation of Rayleigh wave group velocity dispersion and seismic heterogeneity of the Indian crust and uppermost mantle, Geophys. J. Int., 164, 88–98.
14) Kumar, P., M. R. Kumar, G. Srijayanthi, K. Arora, D. Srinagesh, R. K. Chadha, and M. K. Sen (2013), Imaging the Lithosphere-Asthenosphere Boundary of the Indian Plate using converted wave techniques, J. Geophys. Res., 118, 5307–5319, doi:10.1002/jgrb.50366.
15) Kiselev, S., L. Vinnik, S. Oreshin, S. Gupta, S. S. Rai, A. Singh, M. R. Kumar, and G. Mohan (2008), Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions, Geophys. J. Int., 173, 1106–1118.
16) Bhattacharya, S. N., G. Suresh, and S. Mitra (2009), Lithospheric S-wave velocity structure of the Bastar craton, Indian Peninsula, from surface-wave phase-velocity measurements, Bull. Seismol. Soc. Am., 99, 2502–2508.
17) van der Lee, S., and A. Frederiksen (2005), Surface wave tomography applied to the North American upper mantle, in Seismic Earth: Array Analysis of Broadband Seismograms, Geophys. Monogr. Ser., vol. 157, edited by A. Levander and G. Nolet, pp. 67–80, AGU, Washington, D. C.
18) Bodin, T., H. Yuan, and B. Romanowicz (2013), Inversion of receiver functions without deconvolution—Application to the Indian craton, Geophys. J. Int., 196, 1025–1033, doi:10.1093/gji/ggt431.
This section will cover all the papers I have read. I will try to provide a brief summary of what I read. Sole purpose here is to develop a habit of reading research papers as well as improving writing skills.
1) 23/08/2021 Earthquake_Magnitude_types_book_chapter_peter_Shearer (from IRIS SSBW)
2) 26/08/2021 Remotely triggered seismicity on the west coast of United States following Mw 7.9 Denali Fault Earthquake
3) 28/08/2021 Periodically triggered seismicity at Mount Wrangell, Alaska after the Sumatra earthquake
4) 01/09/2021 Basal Nucleation and the prevalence of ascending swarms in Long Valley
5) 09/09/2021 Ambient Noise Tomography across the southern Alaska cordillera (Ward, 2015)
6) 18/09/2021 Receiver Function Analysis - Receiver_Function_Methodology.
7) 27/01/2022 - A groundbreaking study that shows that groundwater level variations can be monitored with the help of dv/v derived from ambient noise cross-correlation functions with sufficiently good spatial and temporal resolutions.
Tracking Groundwater levels using ambient seismic field
8) 29/01/2022 - A study that reinspects the earthquake source spectra, provide methods for correcting the source spectra contaminated by depth phases and newer source duration-spectra relationships.
New perspectives on self similarity for shallow thrust earthquakes
9) 30/01/2022 - A study that uses ambient seismic wavefield to predict ground motions in Los Angeles and surrounding valleys from the virtual earthquakes and comparisons of predicted ground motions with that of CyberShake projects.
Strong ground Motion prediction using virtual earthquakes.
15/11/2021 - On the feasiblity and use of teleseismic P wave coda autocorrelation for mapping shallow seismic discontinuities.
An Internship with Dr. Amy Gilligan on Trans Hudson Bay
21/11/2021- Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America
Vervaet, F., & Darbyshire, F. (2022). Crustal structure around the margins of the eastern Superior craton, Canada, from receiver function analysis. Precambrian Research, 368, 106506.
An Internship with Dr. Keith Koper on Yellowstone
16/12/2021 - Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany)
1) IASP-91 Travel Times - Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465.
2) Systematic interpretation of BODY WAVES - Clarke, T. J., & Silver, P. G. (1991). A procedure for the systematic interpretation of body wave seismograms—I. Application to Moho depth and crustal properties. Geophysical Journal International, 104(1), 41-72.
UNAVCO Generic Mapping Tools - https://github.com/GenericMappingTools/2021-unavco-course