Hyperparameters and tuning strategies for Random Forest
Why Random Forest is my favourite Machine Learning model?
Decision Tree entropy information, gain, gain ratio lecture
Jupyter Notebooks -
1) https://towardsdatascience.com/random-forest-in-python-24d0893d51c0
Filling the missing values with Random Forests
Seismological application of above - https://pubs.geoscienceworld.org/ssa/srl/article/doi/10.1785/0220220103/616607/Using-Machine-Learning-Techniques-with-Incomplete
Random Forest for Imbalanced Dataset
Python code - https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
Paper Link - https://www.jmlr.org/papers/volume18/16-365/16-365.pdf
Random Forest outperform other techniques -
Classic reference - https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf?source=post_page---------------------------
Random Forest Regression -
https://towardsdatascience.com/random-forest-regression-5f605132d19d
1) Math behind PCA (V Imp) - https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
2) Interesting blog on PCA - https://builtin.com/data-science/step-step-explanation-principal-component-analysis
Q) Why should I standardize my features before applying clustering scheme?
Interesting discussion here - https://stats.stackexchange.com/questions/140711/why-does-gap-statistic-for-k-means-suggest-one-cluster-even-though-there-are-ob
Q) Upload project files on github using command line - https://www.tutsmake.com/upload-project-files-on-github-using-command-line/
Q) Creating a personal access token - https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
Q) What is Z-score normalization ?
https://www.statology.org/z-score-normalization/
How to push changes in your local repository to your remote github repository from the terminal.
1) clone the remote repository to your local system using git clone link
2) Make changes, add codes, files, directories to your local repository.
3) add command " git add ."
4) commit your changes using "git commit -m *"
5) push your changes using "git push"
1) Tsfel - https://tsfel.readthedocs.io/en/latest/descriptions/get_started.html
github - https://github.com/fraunhoferportugal/tsfel
2) Pyopy - https://github.com/strawlab/pyopy
3) Featuretools - https://featuretools.alteryx.com/en/stable/
4) A comprehensive list of time series feature extractors - https://www.sktime.org/en/stable/related_software.html
Bootstrap Resampling -
https://towardsdatascience.com/bootstrap-resampling-2b453bb036ec
1) Good review of autoencoders - https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798 - 6 July, 2023
Recursive Feature Elimination - https://towardsdatascience.com/powerful-feature-selection-with-recursive-feature-elimination-rfe-of-sklearn-23efb2cdb54e
1) Basic of an ANN and examples using LR, SR and ANN - https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6 - 8 July, 2023.
2) Basics of a CNN and visualization of input feature maps, filters and output layers - https://medium.com/towards-data-science/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2 - 11 July, 2023.