Given W=∈2⅄(Q/φ)cn
The definition of Q variable should be accurate to its defining base path where 1⅄Q and 2⅄Q, differ from prime base just as φ and Θ differ in paths 1⅄ and 2⅄ of Y base.
so
W=∈2⅄(1⅄Qn1/φn2)cn
and
W=∈2⅄(2⅄Qn1/φn2)cn
then
Wn1 of∈2⅄(1⅄Qn1/φn2)=(1.5/1)=1.5
Wn2 of∈2⅄(1⅄Qn2/φn3)=(1.^6/2)=0.8 and Wn2 of∈2⅄(1⅄Qn2c2/φn3)=(1.^66/2)=0.88 and so on for cn of Wn2 of∈2⅄(1⅄Qn2/φn3)
Wn3 of∈2⅄(1⅄Qn3/φn4)=(1.4/1.5)=0.9^3
Wn4 of∈2⅄(1⅄Qn4/φn5)=(1.^571428/1.^6)=0.9821425 and Wn4 of∈2⅄(1⅄Qn4/φn5c2)=(1.^571428/1.^66)=0.9466^43373493975903614457831325301204819277108 and Wn4 of∈2⅄(1⅄Qn4c2/φn5)=(1.^571428571428/1.^6)=0.9821428571425 and Wn4 of∈2⅄(1⅄Qn4c2/φn5c2)=(1.^571428571428/1.^66)=0.9466437177^27710843373493975903614457831325301204819 and so on for cn of Wn4 of∈2⅄(1⅄Qn4cn/φn5cn)
Wn5 of∈2⅄(1⅄Qn5/φn6)=(1.^18/1.6)=0.7375
Wn6 of∈2⅄(1⅄Qn6/φn7)=(1.^307692/1.625)=0.804733^538461
Wn7 of∈2⅄(1⅄Qn7/φn8)=(1.^1176470588235294/1.^615384)
Wn8 of∈2⅄(1⅄Qn8/φn9)=(1.^210526315789473684/1.^619047)
if W=∈2⅄(1⅄Qn1/φn2)cn
and
W=∈2⅄(2⅄Qn1/φn2)cn
then
Wn1 of∈2⅄(2⅄Qn1/φn2)=(0.^6/1)=0.6
Wn2 of∈2⅄(2⅄Qn2/φn3)=(0.6/2)=0.3
Wn3 of∈2⅄(2⅄Qn3/φn4)=(0.^714285/1.5)=0.47619
Wn4 of∈2⅄(2⅄Qn4/φn5)=(0.^63/1.^6)=0.39375
Wn5 of∈2⅄(2⅄Qn5/φn6)=(0.^846153/1.6)=0.528845625
Wn6 of∈2⅄(2⅄Qn6/φn7)=(0.^7647058823529411/1.625)=0.4705882352941176
Wn7 of∈2⅄(2⅄Qn7/φn8)=(0.^894736842105263157/1.^615384)
Wn8 of∈2⅄(2⅄Qn8/φn9)=(0.^8260869565217391304347/1.^619047)