Given V= ∈1⅄(Q/φ)cn
The definition of Q variable should be accurate to its defining base path where 1⅄Q and 2⅄Q, differ from prime base just as φ and Θ differ in paths 1⅄ and 2⅄ of Y base.
so
V= ∈1⅄(1⅄Qn2/φn1)cn
and
V= ∈1⅄(2⅄Qn2/φn1)cn
then
Vn1 of ∈1⅄(1⅄Qn2/φn1)=(1.^6/0)=0
Vn2 of ∈1⅄(1⅄Qn3/φn2)=(1.4/1)=1.4
Vn3 of ∈1⅄(1⅄Qn4/φn3)=(1.^571428/2)=0.785714 and Vn3 of ∈1⅄(1⅄Qn4c2/φn3)=(1.^571428571428/2)=0.7857140785714
Vn4 of ∈1⅄(1⅄Qn5/φn4)=(1.^18/1.5)=0.78^6 or 0.786666 and so on
Vn5 of ∈1⅄(1⅄Qn6/φn5)=(1.^307692/1.^6)=0.8173075
Vn6 of ∈1⅄(1⅄Qn7/φn6)=(1.^1176470588235294/1.6)=0.698529411764705875
Vn7 of ∈1⅄(1⅄Qn8/φn7)=(1.^210526315789473684/1.625)=0.744939271255060728^615384
if V= ∈1⅄(1⅄Qn2/φn1)cn
and
V= ∈1⅄(2⅄Qn2/φn1)cn
then
Vn1 of ∈1⅄(2⅄Qn2/φn1)=(0.6/0)=0
Vn2 of ∈1⅄(2⅄Qn3/φn2)=(0.^714285/1)=0.714285
Vn3 of ∈1⅄(2⅄Qn4/φn3)=(0.^63/2)=0.315
Vn4 of ∈1⅄(2⅄Qn5/φn4)=(0.^846153/1.5)=0.564102
Vn5 of ∈1⅄(2⅄Qn6/φn5)=(0.^7647058823529411/1.^6)=0.4779411764705881875
Vn6 of ∈1⅄(2⅄Qn7/φn6)=(0.^894736842105263157/1.6)=0.559210526315789473125
Vn7 of ∈1⅄(2⅄Qn8/φn7)=(0.^8260869565217391304347/1.625)=0.5083612040133779264213^538461