Given R=∈(φ/P)cn
R represents ∈(φ/P)cn
3⅄φncn/pn that path 3⅄ of φncn/pn differ from paths 2⅄φncn/pn and 1⅄φncn/pn
Path 3⅄R=φn1cn/pn1
3⅄Rn1=1φn1/pn1=(φn1/pn1)=(0/2)=0
3⅄Rn2=1φn2/pn2=∈(φn2/pn2)=(1/3)=0.^3
3⅄Rn3=1φn3/pn3=(φn3/pn3)=(2/5)=0.4
3⅄Rn4=1φn4/pn4=∈(φn4/pn4)=(1.5/7)=0.2^142857
3⅄Rn5=1φn5/pn5=∈(φn5/pn5)=(1.^6/11)=1.^45→. . .(φn5c2/pn5)=(1.^66/11)=0.150^9→. . . and so on
3⅄Rn6=1φn6/pn6=∈(φn6/pn6)=(1.6/13)=0.1^230769
3⅄Rn7=1φn7/pn7=∈(φn7/pn7)=(1.625/17)=0.095^5882352941176470
3⅄Rn8=1φn8/pn8=∈(φn8/pn8)=(1.^615384/19)=0.079757^052631578421→. . .(φn8c2/pn8)=0.079757079757^052631578421→. . . and so on
3⅄Rn9=1φn9/pn9=∈(φn9/pn9)=(1.^619047/23)=0.070393^3478260865217391304
Path 1⅄R=φn2/pn1
1⅄Rn1=(φn2/pn1)=(1/2)=0.5
1⅄Rn2=(φn3/pn2)=(2/3)=0.^6 or 0.666 and so on...
1⅄Rn3=(φn4/pn3)=(1.5/5)=0.3
1⅄Rn4=(φn5/pn4)=(1.^6/7)=0.2^285714 or 0.2285714285714285714 and so on...
1⅄Rn5=(φn6/pn5)=(1.6/11)=0.1^45 or 0.1454545 and so on...
1⅄Rn6=(φn7/pn6)=(1.625/13)=0.125
1⅄Rn7=(φn8/pn7)=(1.^615384/17)=0.095022^5882352941176470 or 0.095022588235294117647058823529411764705882352941176470 and so on...
1⅄Rn8=(φn9/pn8)=(1.^619047/19)=0.085213 and 1⅄Rn8=(φn9c2/pn8)=(1.^619047619047/19)=0.085213032581^421052631578947368 or 0.085213032581^421052631578947368421052631578947368 and so on for cn of 1⅄Rn8=(φn9cn/pn8)
1⅄Rn9=(φn10/pn9)=(1.6^1762941/23)=0.070331713478260869565217391304 or 0.0703317134782608695652173913043478260869565217391304 and so on....
Path 2⅄R=φn1/pn2
2⅄Rn1=(φn1/pn2)=(0/3)=0
2⅄Rn2=(φn2/pn3)=(1/5)=0.2
2⅄Rn3=(φn3/pn4)=(2/7)=0.^285714 or 0.285714285714285714 and so on....
2⅄Rn4=(φn4/pn5)=(1.5/11)=0.1^36 or 0.1363636 and so on...
2⅄Rn5=(φn5/pn6)=(1.^6/13)=0.1^230769 or 0.1230769230769230769 and so on....
2⅄Rn6=(φn6/pn7)=(1.6/17)=0.0^9411764705882352 or 0.0941176470588235294117647058823529411764705882352 and so on...
2⅄Rn7=(φn7/pn8)=(1.625/19)=0.085^526315789473684210 or 0.085526315789473684210526315789473684210526315789473684210 and so on....
2⅄Rn8=(φn8/pn9)=(1.^615384/23)=0.070234^0869565217391304347826 or 0.070234086956521739130434782608695652173913043478260869565217391304347826 and so on...