1dir.cloud - 1dir.org - 1dir.cc

1 decimal integer ring cycle of many

Quantum Field Fractal Polarization Math Constants

nemeth braille printable arx calc

pronounced why phi prime quotients

Y φ Θ P Q Ψ

condensed matter

Y Phi Theta Prime Q Psi Quotient Based Numerals 

nu mer numer nu mer i call numerical nomenclature & arc ratio constants

Q represents a ratio quotient of a prime number divided by a prime number

Q=(⅄p/⅄p) so 1⅄Q=(Pn2/Pn1) and ∈2Q=(Pn1/Pn2)

Prime consecutive step tier base rationals of 2:199 of the 10 digit prime 1,000,000,007

1st tier 46 primes example 10 tiers to 9 divisions of primes with primes (p) or (P) PQ2Q 1Q

3Q does not exist where numbers of p have no decimals path variant of cn

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 

2nd tier 1st divide steps in decimal value with cycle decimal key in bold with ^ repeat notation at start of decimal cycle for calculation variable change when factoring decimals of multiple cycle strain stem(s) factored ratios of later prime divided by previous prime of prime consecutive order.  

Path of Q base 1⅄Q 

examples of ∈11Qn1=(pn2/pn1

11Qn1 prime consecutive later divided by previous cycles back in remainder back to the first division remainder.

have not read this anywhere . . . this may help with the mersenne prime search of primes.

if 1P=(pn2/pn1)=11Qn1 consecutive prime later divided by previous cycles back in remainder back to the first remainder then the prime no matter the number of digits when later prime divided by the next previous of consecutive primes will cycle back to the first remainder. The first 45 variables of 1P=(pn2/pn1)=11Qn1 prove that fact. Both 2P=(pn1/pn2)=21Qn equation combined with 1P=(pn2/pn1)=11Qn1 equation can varify as functions of P with Q bases if primes are consecutive no matter the number of digits to the prime numbers.

11Qn1=(pn2/pn1)=(3/2)=1.5

11Qn2=(pn3/pn2)=(5/3)=1.^6

11Qn3=(pn4/pn3)=(7/5)=1.4

11Qn4=(pn5/pn4)=(11/7)=1.^571428

11Qn5=(pn6/pn5)=(13/11)=1.^18

11Qn6=(pn7/pn6)=(17/13)=1.^307692

11Qn7=(pn8/pn7)=(19/17)=1.^1176470588235294

11Qn8=(pn9/pn8)=(23/19)=1.^210526315789473684

11Qn9=(pn10/pn9)=(29/23)=1.^2608695652173913043478

11Qn10=(pn11/pn10)=(31/29)=1.^0689655172413793103448275862

11Qn11=(pn/pn)=(37/31)=1.^193548387096774

11Qn12=(pn/pn)=(41/37)=1.^108

11Qn13=(pn/pn)=(43/41)=1.^04878

11Qn14=(pn/pn)=(47/43)=1.^093023255813953488372

11Qn15=(pn/pn)=(53/47)=1.^12765957446808510638297872340425531914893610702

11Qn16=(pn/pn)=(59/53)=1.^1132075471698

11Qn17=(pn/pn)=(61/59)=1.^0338983050847457627118644067796610169491525423728813559322

11Qn18=(pn/pn)=(67/61)=1.^098360655737704918032786885245901639344262295081967213114754

11Qn19=(pn/pn)=(71/67)=1.^059701492537313432835820895522388

11Qn20=(pn/pn)=(73/71)=1.^02816901408450704225352112676056338

11Qn21=(pn/pn)=(79/73)=1.^08219178

11Qn22=(pn/pn)=(83/79)=1.^0506329113924

11Qn23=(pn/pn)=(89/83)=1.^07228915662650602409638554216867469879518

11Qn24=(pn/pn)=(97/89)=1.^08988764044943820224719101123595505617977528

11Qn25=(pn/pn)=(101/97)=1.^04123092783505154639175257731958762886597938144329896907216494845360820618

11Qn26=(pn/pn)=(103/101)=1.^0198

11Qn27=(pn/pn)=(107/103)=1.^0388349514563106796111662136504854368932

11Qn28=(pn/pn)=(109/107)=1.^01869158878504672897196261682242990654205607476635514

11Qn29=(pn/pn)=(113/109)=1.^0366972477064220183486238532110091743119266055045871559633027522935779816513758712844

11Qn30=(pn/pn)=(127/113)=1.^123893805308849557522

11Qn31=(pn/pn)=(131/127)=1.^031496062992125984251968503937007874015748

11Qn32=(pn/pn)=(137/131)=1.^045801526717557251908396946564885496183206106870229007633587786259541984732824427480916030534351145038167938931297099236641221374

11Qn33=(pn/pn)=(139/137)=1.^01459854

11Qn34=(pn/pn)=(149/139)=1.^071942446043165474820143884892086330935251798561151080291955395683453237410

11Qn35=(pn/pn)=(151/149)=1.^01343624295302

11Qn36=(pn/pn)=(157/151)=1.^0397350993377483443708609271523178807284768211920529801324503311258278145695364238410596026490066225165562913907218543046357615894

11Qn37=(pn/pn)=(163/157)=1.^038216560509554140127388535031847133757961783439490445859872611464968152866242

11Qn38=(pn/pn)=(167/163)=1.^024539877300613496932515337423312883435582822085889570552147239263803680981595092

11Qn39=(pn/pn)=(173/167)=1.^0359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239520958083832335329341317365269461077844311377245508982

11Qn40=(pn/pn)=(179/173)=1.^034682080924554913294797687861271676300578

11Qn41=(pn/pn)=(181/179)=1.^0111731843575418994413407821229050279329608936536312849162

11Qn42=(pn/pn)=(191/181)=1.^005524861878453038674033149171270718232044198895027624309392265193370165745856353591160220994475138121546961325966850828729281767955801104972375690607734806629834254143646408839779

11Qn43=(pn/pn)=(193/191)=1.^01047120418848167539267015706806282722513089005235602094240837696335078534031413612565445026178

11Qn44=(pn/pn)=(197/193)=1.^02072538860103626943005181347150259067357512953367875647668393782383419689119170984455958549222797927461139896373069948186528497409326424870466321243523316062176165803108808290155440414507772

11Qn45=(pn/pn)=(199/197)=1.^01015228426395939086294416243654822335025380710659898477157360406091370558375634517766497461928934

Prime consecutive step tier base rationals of 2:199 of the 10 digit prime 1,000,000,007

1st tier 46 primes example 10 tiers to 9 divisions of primes with primes (p) or (P) PQ2Q 1Q

3Q does not exist where numbers of p have no decimals path variant of cn

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 

2nd tier 1st divide steps in decimal value with cycle decimal key in bold with ^ repeat notation at start of decimal cycle for calculation variable change when factoring decimals of multiple cycle strain stem(s) factored ratios of previous prime divided by consecutive later prime.  

Alternate path PQ21Qn1=(pn1/pn2

21 prime consecutive previous divided by later cycles back in remainder back to the dividend. 

have not read this anywhere . . . this may help with the mersenne prime search of primes.

if 2P=(pn1/pn2)=21Qn1 consecutive prime previous divided by later cycles back in remainder back to the dividend then the prime no matter the number of digits when previous prime divided by the next later consecutive prime will cycle back to the dividend. The first 45 variables of 2P=(pn1/pn2)=21Qn prove that fact.

21Qn1=(pn1/pn2)=(2/3)=0.^6 

21Qn2=(pn2/pn3)=(3/5)=0.6 

21Qn3=(pn3/pn4)=(5/7)=0.^714285 

21Qn4=(pn4/pn5)=(7/11)=0.^63 

21Qn5=(pn5/pn6)=(11/13)=0.^846153 

21Qn6=(pn6/pn7)=(13/17)=0.^7647058823529411 

21Qn7=(pn7/pn8)=(17/19)=0.^894736842105263157 

21Qn8=(pn8/pn9)=(19/23)=0.^8260869565217391304347

21Qn9=(pn9/pn10)=(23/29)=0.^7931034482758620689655172413

21Qn10=(pn10/pn11)=(29/31)=0.^935483870967741

21Qn11=(pn11/pn12)=(31/37)=0.^837

21Qn12=(pn12/pn13)=(37/41)=0.^9024390243

21Qn13=(pn13/pn14)=(41/43)=0.^953488372093023255813

21Qn14=(pn14/pn15)=(43/47)=0.^9148936170212765957446808510638297872340425531

21Qn15=(pn15/pn16)=(47/53)=0.^88679245283018867924528301

21Qn16=(pn16/pn17)=(53/59)=0.^8983050847457627118644067796610169491525423728813559322033

21Qn17=(pn17/pn18)=(59/61)=0.^967213114754098360655737704918032786885245901639344262295081

21Qn18=(pn18/pn19)=(61/67)=0.^910447761194029850746268656716417

21Qn19=(pn19/pn20)=(67/71)=0.^94366197183098591549295774647887323

21Qn20=(pn20/pn21)=(71/73)=0.^97260273

21Qn21=(pn21/pn22)=(73/79)=0.^9240506329113

21Qn22=(pn22/pn23)=(79/83)=0.^95180722891566265060240963855421686746987

21Qn23=(pn23/pn24)=(83/89)=0.^93258426966292134831460674157303370786516853

21Qn24=(pn24/pn25)=(89/97)=0.^917525773195876288659793814432989690721649484536082474226804123711340206185567010309278350515463

21Qn25=(pn25/pn26)=(97/101)=0.^9603

21Qn26=(pn26/pn27)=(101/103)=0.^9805825242718446601941747572815533

21Qn27=(pn27/pn28)=(103/107)=0.^96261682242990654205607476635514018691588785046728971

21Qn28=(pn28/pn29)=(107/109)=0.^0981651376146788990825688073394495412844036697247706422018348623853211009174311926605504587155963302752293577

21Qn29=(pn29/pn30)=(109/113)=0.^9646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707

21Qn30=(pn30/pn31)=(113/127)=0.^88976377952755905511811023622047244094481

21Qn31=(pn31/pn32)=(127/131)=0.^969465648854961832061068015267175572519083

21Qn32=(pn32/pn33)=(131/137)=0.^95620437

21Qn33=(pn33/pn34)=(137/139)=0.^9856115107913669064748201438848920863309352517

21Qn34=(pn34/pn35)=(139/149)=0.^932885906040268456375838926174496651006711409395973154362416107382550335570469798657718120805369127516778523489

21Qn35=(pn35/pn36)=(149/151)=0.^986754966887417218543046357615894039735099337748344370860927152317880794701

21Qn36=(pn36/pn37)=(151/157)=0.^961783439490445859872611464968152866242038216560509554140127388535031847133757

21Qn37=(pn37/pn38)=(157/163)=0.^963190184049079754601226993865030674846625766871165644171779141104294478527607361

21Qn38=(pn38/pn39)=(163/167)=0.^9760479041916167664670658682634730538922155688622754491017964071856287425149700598802395209580838323353293413173652694610778443113772455089820359281437125748502994011

21Qn39=(pn39/pn40)=(167/173)=0.^9653179190751445086705202312138728323699421

21Qn40=(pn40/pn41)=(173/179)=0.^96648044692737430167597765363128491620111731843575418994413407821229050279329608938547486033519553072625698324022346336871508379888268156424581005586592178770949720670391061452513

21Qn41=(pn41/pn42)=(179/181)=0.^9889502762430939226519337016574585635359116022099447513812154696132596685082877292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441

21Qn42=(pn42/pn43)=(181/191)=0.^94764397905759162303664921465968586387434554973821989528795811518324607329842931937172774869109

21Qn43=(pn43/pn44)=(191/193)=0.^989637304699481864284974093264248704663212435233160621761658031088082901554404145077720207253886010362694300518134715025906735751295336787564766839378238341917098445595854922279792746113

21Qn44=(pn44/pn45)=(193/197)=0.^979695431

21Qn45=(pn45/pn46)=(197/199)=0.^989949748743718592964824120603015075025125628140703517587939698492462311557763819095477386934673366834170854271356783919597


3rd tier 2nd Prime 1(21Q) base

Variants next set of prime radical decimal stem path factoring to the degree of the variant decimal cycles per array.

Quadratic equations dependent of 4 prime radicals decimal cycle limit or break in stem numeral factoring.

Factoring  for variables of 2Qnc1  and so on . . .

(Qn2/Qn1c1)=(0.6/0.6)=1

2Qn1=1

Variant prime radical divide

(Qn2/Qn1c2)=0.6/0.66=0.9^09

(Qn2/Qn1c3)=0.6/0.666=0.9^009 and so on . . .

then

(Qn3c1/Qn2)=0.714285/0.6=1.190475

2Qn2=1.190475

(Qn3c2/Qn2)=0.714285714285/0.6=1.1904759523808^3 and so on . . .

then

(Qn4c1/Qn3c1)=0.63/0.714285=0.8^819994 and so on . . .

2Qn3=0.8^819994 

(Qn5c1/Qn4c1)=0.^846153/0.^63=1.3431

2Qn4=1.3431

(Qn6c1/Qn5c1)=0.^7647058823529411/0.^846153=0.9037442192^522405

2Qn5=0.9037442192^522405

and so on . . .

12Q divide starting at 1(Qn2/Qn1) then 22Q divide starting at 2(Qn1/Qn2)

WHILE

in short 1(Qn2/Qn1) is not 2(Qn1/Qn2)

1(12Q)n1=(11Q)n2/(11Q)n1 is not 2(12Q)n2=(11Q)n1/(11Q)n2

4th tier 3rd Prime 1⅄(1(21Q) base

Variants next set of prime radical decimal stem path factoring to the degree of the variant decimal cycles per array.

Quadratic equations dependent of 4 prime radicals decimal cycle limit or break in stem numeral factoring.

Factoring  for variables of 3Qnc1  and so on . . .

∈{(Qn4/Qn3)/(Qn2/Qn1)}=2Qn2/2Qn1=^0.9/1=0.9

3Qn1=0.9 

then {(Qn4/Qn3)c2/(Qn2/Qn1)}=2Qn2c2/2Qn1=^0.909/1=0.909 and so on . . . where c2 is applicable to {(Qn4/Qn3)c2

∈{(Qn5/Qn4)/(Qn3/Qn2)}=2Qn3/2Qn2=1.190475/^0.9=1.32275

3Qn2=1.32275

then {(Qn5/Qn4)/(Qn3/Qn2)c2}=2Qn3/2Qn2c2=1.190475/^0.909=1.210^6435 and so on . . .

∈{(Qn6/Qn5)/(Qn4/Qn3)}=2Qn4/2Qn3=0.8^819994/1.190475=0.740^880236

3Qn3=0.740^880236

then {(Qn6/Qn5)c2/(Qn4/Qn3)}=2Qn4c2/2Qn3=0.8^819994819994/1.190475=0.740880305^759801 and so on . . .

5th tier 4th Prime 1(1⅄(1(21Q) base

Variants next set of prime radical decimal stem path factoring to the degree of the variant decimal cycles per array.

Quadratic equations dependent of 4 prime radicals decimal cycle limit or break in stem numeral factoring.

Factoring  for variables of 4Qnc1  and so on . . .

(3Qn2/3Qn1)=1.4679

4Qn1=1.4679

then (3Qn2/3Qn1c2)=1.45^517

(3Qn3/3Qn2)=0.5601060^18522

4Qn2=0.5601060^18522

then (3Qn3c2/3Qn2)=0.560106019187^477603 and so on . . .

6th tier 5th Prime 1(1(1⅄(1(21Q) base

Variants next set of prime radical decimal stem path factoring to the degree of the variant decimal cycles per array.

Quadratic equations dependent of 4 prime radicals decimal cycle limit or break in stem numeral factoring.

Factoring  for variables of 5Qnc1  and so on . . .

(3Qn3/3Qn2)/(3Qn2/3Qn1)=(4Qn2/4Qn1)=(0.5601060^18522/1.4679)

5Qn1=0.3815696018270999386879215205395462906192519926425505824647455548744464881803937597929014238027113563594182199059881470113767967845221064105184277685809660058587097213706655766741603651474896110089243136453436882621472852374139465222426595817153757067920158489134137202806730703726411880918318686559029906669391647932420464609303767286599906256556986170720076299475441106342393896041964779617140132165913890592002799850126030383541113154847039989100076299475441106342393896041964711492608488316642823080591320934668574153552694325226514067715784453981878874582737243681449690033371020505^48402479732951835956809046937802302609160956195926153007698072071667007745827372436814496900333810205054

⅄Q Alternate Base Path Variants 2nd tier of Q and third divide of P prime base quotient ratios

1(1Qn2/1Qn1) and 1(2Qn2/2Qn1) are the first ratio definitions of the sets structured from each equation.

12Q for each is then respectably 12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1)

Then if 

L=1(1Qn2/2Qn1)

K=2(1Qn1/2Qn2)

U=1(2Qn2/1Qn1)

J=2(2Qn1/1Qn2)

Path Set 12Q pertains to base equations

12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1) and (L) 12Q of (1Qn2/2Qn1) and (U) 12Q of (2Qn2/1Qn1)


Then

1⅄(12Q)n1=[12Q=(1⅄Qn2c1/1⅄Qn1c1)]=(1.^6/1.5)=1.0^6

1⅄(12Q)n2=[12Q=(1⅄Qn3c1/1⅄Qn2c1)]=(1.4/1.^6)=0.875

1⅄(12Q)n3=[12Q=(1⅄Qn4c1/1⅄Qn3c1)]=(1.^571428/1.4)=1.12244^857142

1⅄(12Q)n4=[12Q=(1⅄Qn5c1/1⅄Qn4c1)]=(1.^18/1.^571428)

1⅄(12Q)n5=[12Q=(1⅄Qn6c1/1⅄Qn5c1)]=(1.^307692/1.^18)

1⅄(12Q)n6=[12Q=(1⅄Qn7c1/1⅄Qn6c1)]=(1.^1176470588235294/1.^307692)

1⅄(12Q)n7=[12Q=(1⅄Qn8c1/1⅄Qn7c1)]=(1.^210526315789473684/1.^1176470588235294)

1⅄(12Q)n8=[12Q=(1⅄Qn9c1/1⅄Qn8c1)]=(1.^2608695652173913043478/1.^210526315789473684)

1⅄(12Q)n9=[12Q=(1⅄Qn10c1/1⅄Qn9c1)]=(1.^0689655172413793103448275862/1.^2608695652173913043478)

1⅄(12Q)n10=[12Q=(1⅄Qn11c1/1⅄Qn10c1)]=(1.^193548387096774/1.^0689655172413793103448275862)

1⅄(12Q)n11=[12Q=(1⅄Qn12c1/1⅄Qn11c1)]=(1.^108/1.^193548387096774)

1⅄(12Q)n12=[12Q=(1⅄Qn13c1/1⅄Qn12c1)]=(1.^04878/1.^108)

1⅄(12Q)n13=[12Q=(1⅄Qn14c1/1⅄Qn13c1)]=(1.^093023255813953488372/1.^04878)

1⅄(12Q)n14=[12Q=(1⅄Qn15c1/1⅄Qn14c1)]=(1.^12765957446808510638297872340425531914893610702/1.^093023255813953488372)

1⅄(12Q)n15=[12Q=(1⅄Qn16c1/1⅄Qn15c1)]=(1.^1132075471698/1.^12765957446808510638297872340425531914893610702)

1⅄(12Q)n16=[12Q=(1⅄Qn17c1/1⅄Qn16c1)]=(1.^0338983050847457627118644067796610169491525423728813559322/1.^1132075471698)

1⅄(12Q)n17=[12Q=(1⅄Qn18c1/1⅄Qn17c1)]=(1.^098360655737704918032786885245901639344262295081967213114754/1.^0338983050847457627118644067796610169491525423728813559322)

1⅄(12Q)n18=[12Q=(1⅄Qn19c1/1⅄Qn18c1)]=(1.^059701492537313432835820895522388/1.^098360655737704918032786885245901639344262295081967213114754)

1⅄(12Q)n19=[12Q=(1⅄Qn20c1/1⅄Qn19c1)]=(1.^02816901408450704225352112676056338/1.^059701492537313432835820895522388)

1⅄(12Q)n20=[12Q=(1⅄Qn21c1/1⅄Qn20c1)]=(1.^08219178/1.^02816901408450704225352112676056338)

1⅄(12Q)n21=[12Q=(1⅄Qn22c1/1⅄Qn21c1)]=(1.^0506329113924/1.^08219178)

1⅄(12Q)n22=[12Q=(1⅄Qn23c1/1⅄Qn22c1)]=(1.^07228915662650602409638554216867469879518/1.^0506329113924)

1⅄(12Q)n23=[12Q=(1⅄Qn24c1/1⅄Qn23c1)]=(1.^08988764044943820224719101123595505617977528/1.^07228915662650602409638554216867469879518)

1⅄(12Q)n24=[12Q=(1⅄Qn25c1/1⅄Qn24c1)]=(1.^04123092783505154639175257731958762886597938144329896907216494845360820618/1.^08988764044943820224719101123595505617977528)

1⅄(12Q)n25=[12Q=(1⅄Qn26c1/1⅄Qn25c1)]=(1.^0198/1.^04123092783505154639175257731958762886597938144329896907216494845360820618)

1⅄(12Q)n26=[12Q=(1⅄Qn27c1/1⅄Qn26c1)]=(1.^0388349514563106796111662136504854368932/1.^0198)

1⅄(12Q)n27=[12Q=(1⅄Qn28c1/1⅄Qn27c1)]=(1.^01869158878504672897196261682242990654205607476635514/1.^0388349514563106796111662136504854368932)

1⅄(12Q)n28=[12Q=(1⅄Qn29c1/1⅄Qn28c1)]=(1.^0366972477064220183486238532110091743119266055045871559633027522935779816513758712844/1.^01869158878504672897196261682242990654205607476635514)

1⅄(12Q)n29=[12Q=(1⅄Qn30c1/1⅄Qn29c1)]=(1.^123893805308849557522/1.^0366972477064220183486238532110091743119266055045871559633027522935779816513758712844)

1⅄(12Q)n30=[12Q=(1⅄Qn31c1/1⅄Qn30c1)]=(1.^031496062992125984251968503937007874015748/1.^123893805308849557522)

1⅄(12Q)n31=[12Q=(1⅄Qn32c1/1⅄Qn31c1)]=(1.^045801526717557251908396946564885496183206106870229007633587786259541984732824427480916030534351145038167938931297099236641221374/1.^031496062992125984251968503937007874015748)

1⅄(12Q)n32=[12Q=(1⅄Qn33c1/1⅄Qn32c1)]=(1.^01459854/1.^045801526717557251908396946564885496183206106870229007633587786259541984732824427480916030534351145038167938931297099236641221374)

1⅄(12Q)n33=[12Q=(1⅄Qn34c1/1⅄Qn33c1)]=(1.^071942446043165474820143884892086330935251798561151080291955395683453237410/1.^01459854)

1⅄(12Q)n34=[12Q=(1⅄Qn35c1/1⅄Qn34c1)]=(1.^01343624295302/1.^071942446043165474820143884892086330935251798561151080291955395683453237410)

1⅄(12Q)n35=[12Q=(1⅄Qn36c1/1⅄Qn35c1)]=(1.^0397350993377483443708609271523178807284768211920529801324503311258278145695364238410596026490066225165562913907218543046357615894/1.^01343624295302)

1⅄(12Q)n36=[12Q=(1⅄Qn37c1/1⅄Qn36c1)]=(1.^038216560509554140127388535031847133757961783439490445859872611464968152866242/1.^0397350993377483443708609271523178807284768211920529801324503311258278145695364238410596026490066225165562913907218543046357615894)

1⅄(12Q)n37=[12Q=(1⅄Qn38c1/1⅄Qn37c1)]=(1.^024539877300613496932515337423312883435582822085889570552147239263803680981595092/1.^038216560509554140127388535031847133757961783439490445859872611464968152866242)

1⅄(12Q)n38=[12Q=(1⅄Qn39c1/1⅄Qn38c1)]=(1.^0359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239520958083832335329341317365269461077844311377245508982/1.^024539877300613496932515337423312883435582822085889570552147239263803680981595092)

1⅄(12Q)n39=[12Q=(1⅄Qn40c1/1⅄Qn39c1)]=(1.^034682080924554913294797687861271676300578/1.^0359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239520958083832335329341317365269461077844311377245508982)

1⅄(12Q)n40=[12Q=(1⅄Qn41c1/1⅄Qn40c1)]=(1.^0111731843575418994413407821229050279329608936536312849162/1.^034682080924554913294797687861271676300578)

1⅄(12Q)n41=[12Q=(1⅄Qn42c1/1⅄Qn41c1)]=(1.^005524861878453038674033149171270718232044198895027624309392265193370165745856353591160220994475138121546961325966850828729281767955801104972375690607734806629834254143646408839779/1.^0111731843575418994413407821229050279329608936536312849162)

1⅄(12Q)n42=[12Q=(1⅄Qn43c1/1⅄Qn42c1)]=(1.^01047120418848167539267015706806282722513089005235602094240837696335078534031413612565445026178/1.^005524861878453038674033149171270718232044198895027624309392265193370165745856353591160220994475138121546961325966850828729281767955801104972375690607734806629834254143646408839779)

1⅄(12Q)n43=[12Q=(1⅄Qn44c1/1⅄Qn43c1)]=(1.^02072538860103626943005181347150259067357512953367875647668393782383419689119170984455958549222797927461139896373069948186528497409326424870466321243523316062176165803108808290155440414507772/1.^01047120418848167539267015706806282722513089005235602094240837696335078534031413612565445026178)

1⅄(12Q)n44=[12Q=(1⅄Qn45c1/1⅄Qn44c1)]=(1.^01015228426395939086294416243654822335025380710659898477157360406091370558375634517766497461928934/1.^02072538860103626943005181347150259067357512953367875647668393782383419689119170984455958549222797927461139896373069948186528497409326424870466321243523316062176165803108808290155440414507772)

and so on for variables of ∈1⅄(12Q)n=[12Q=(1⅄Qn2cn/1⅄Qn1cn)] that vary to degrees of stem cycle count variant 1⅄(12Q)ncn


Functions applicable to variables of ∈1⅄(12Q)ncn=[12Q=(1⅄Qn2cn/1⅄Qn1cn)]


X⅄=(n2xn1) example X⅄(12Q)n=[X2Q=(1⅄Qn2cnx1⅄Qn1cn)] 


+⅄=(nncn+nncn) example +⅄(12Q)n=[+2Q=(1⅄Qn2cn+1⅄Qn1cn)]


1-⅄=(n2-n1) example 1-⅄(12Q)n=[1-2Q=(1⅄Qn2cn-1⅄Qn1cn)]

3rd tier of Q and 4th divide of P prime base quotient ratios

Then example 1⅄(13Q)n1 of (12Qn2c1/12Qn1c1)] so

1⅄(13Q)n1 of (12Qn2c1/12Qn1c1)]=(0.875/1.0^6)=0.82^5471698113207

1⅄(13Q)n2 of (12Qn3c1/12Qn2c1)]=(1.12244^857142/0.875)=1.28279836733^714285

1⅄(13Q)n of (12Qn4c1/12Qn3c1)]=[(1⅄Qn5c1/1⅄Qn4c1)/(1⅄Qn4c1/1⅄Qn3c1)]=[(1.^18/1.^571428)/(1.^571428/1.4)]

and so on for variables of ∈1⅄(13Q)ncn of (12Qn2c1/12Qn1c1)] 


4th tier of Q and 5th divide of P prime base quotient ratios

Then example 1⅄(14Q)n1 of (13Qn2c1/13Qn1c1)] so

1⅄(14Q)n1 of (13Qn2c1/13Qn1c1)]=(1.28279836733^714285/0.82^5471698113207)

1⅄(14Q)n1 of (13Qn2c1/13Qn1c1)]=[(12Qn4c1/12Qn3c1)/(12Qn3c1/12Qn2c1)]

and so on for variables of ∈1⅄(14Q)ncn of (13Qn2c1/13Qn1c1)] 


Again ⅄Q Alternate Base Path Variants 2nd tier of Q and third divide of P prime base quotient ratios

if ∈12Q=[1⅄(12Q)=(1⅄Qn2cn/1⅄Qn1cn)] and 12Q=[1⅄(22Q)=(2⅄Qn2cn/2⅄Qn1cn)] if ∈12Q=(Nn2cn/Nn1cn)

Then 12Q=[1⅄(22Q)=(2⅄Qn2cn/2⅄Qn1cn)]=[(Pn2/Pn3)/(Pn1/Pn2)]=[(3/5)/(2/3)]=(0.6/0.^6)=1 if cn of 2⅄Qn1cn ia 1 stem decimal cycle for variable 2⅄Qn1c1

1⅄(12Q)n1=[12Q=(2⅄Qn2c1/2⅄Qn1c1)]=(0.6/0.^6)=1

1⅄(12Q)n2=[12Q=(2⅄Qn3c1/2⅄Qn2c1)]=(0.^714285/0.6)=1.190475

1⅄(12Q)n3=[12Q=(2⅄Qn4c1/2⅄Qn3c1)]=(0.^63/0.^714285)=0.^882000

1⅄(12Q)n4=[12Q=(2⅄Qn5c1/2⅄Qn4c1)]=(0.^846153/0.^63)=1.3431

1⅄(12Q)n5=[12Q=(2⅄Qn6c1/2⅄Qn5c1)]=(0.^7647058823529411/0.^846153)=0.9037442192^522405

1⅄(12Q)n6=[12Q=(2⅄Qn7c1/2⅄Qn6c1)]=(0.^894736842105263157/0.^7647058823529411)=1.17^0040485829959630

1⅄(12Q)n7=[12Q=(2⅄Qn8c1/2⅄Qn7c1)]=(0.^8260869565217391304347/0.^894736842105263157)=0.9232^736572890025584679383631713554996444089514066496172914677749360613819973501278772378525855854219948849114091148337595907937620560102301790290561

1⅄(12Q)n8=[12Q=(2⅄Qn9c1/2⅄Qn8c1)]=(0.^7931034482758620689655172413/0.^8260869565217391304347)=0.960072^595281306715063616878306896551724137940635199110707803992741431940963702359346642564246727949183303085309056251742286751361162484572542649727767695195825675317604355716888003620163339382940109852993595281306715063616878306896551724137940635199110707803992741431940963702359346642564246727949183303085309056251742286751361162484572542649727767695195825675317604355716888003620163339382940109852993

1⅄(12Q)n9=[12Q=(2⅄Qn10c1/2⅄Qn9c1)]=(0.^935483870967741/0.^7931034482758620689655172413)

1⅄(12Q)n10=[12Q=(2⅄Qn11c1/2⅄Qn10c1)]=(0.^837/0.^935483870967741)

1⅄(12Q)n11=[12Q=(2⅄Qn12c1/2⅄Qn11c1)]=(0.^9024390243/0.^837)

1⅄(12Q)n12=[12Q=(2⅄Qn13c1/2⅄Qn12c1)]=(0.^953488372093023255813/0.^9024390243)

1⅄(12Q)n13=[12Q=(2⅄Qn14c1/2⅄Qn13c1)]=(0.^9148936170212765957446808510638297872340425531/0.^953488372093023255813)

1⅄(12Q)n14=[12Q=(2⅄Qn15c1/2⅄Qn14c1)]=(0.^88679245283018867924528301/0.^9148936170212765957446808510638297872340425531)

1⅄(12Q)n15=[12Q=(2⅄Qn16c1/2⅄Qn15c1)]=(0.^8983050847457627118644067796610169491525423728813559322033/0.^88679245283018867924528301)

1⅄(12Q)n16=[12Q=(2⅄Qn17c1/2⅄Qn16c1)]=(0.^967213114754098360655737704918032786885245901639344262295081/0.^8983050847457627118644067796610169491525423728813559322033)

1⅄(12Q)n17=[12Q=(2⅄Qn18c1/2⅄Qn17c1)]=(0.^910447761194029850746268656716417/0.^967213114754098360655737704918032786885245901639344262295081)

1⅄(12Q)n18=[12Q=(2⅄Qn19c1/2⅄Qn18c1)]=(0.^94366197183098591549295774647887323/0.^910447761194029850746268656716417)

1⅄(12Q)n19=[12Q=(2⅄Qn20c1/2⅄Qn19c1)]=(0.^97260273/0.^94366197183098591549295774647887323)

1⅄(12Q)n20=[12Q=(2⅄Qn21c1/2⅄Qn20c1)]=(0.^9240506329113/0.^97260273)

1⅄(12Q)n21=[12Q=(2⅄Qn22c1/2⅄Qn21c1)]=(0.^95180722891566265060240963855421686746987/0.^9240506329113)

1⅄(12Q)n22=[12Q=(2⅄Qn23c1/2⅄Qn22c1)]=(0.^93258426966292134831460674157303370786516853/0.^95180722891566265060240963855421686746987)

1⅄(12Q)n23=[12Q=(2⅄Qn24c1/2⅄Qn23c1)]=(0.^917525773195876288659793814432989690721649484536082474226804123711340206185567010309278350515463/0.^93258426966292134831460674157303370786516853)

1⅄(12Q)n24=[12Q=(2⅄Qn25c1/2⅄Qn24c1)]=(0.^9603/0.^917525773195876288659793814432989690721649484536082474226804123711340206185567010309278350515463)

1⅄(12Q)n25=[12Q=(2⅄Qn26c1/2⅄Qn25c1)]=(0.^9805825242718446601941747572815533/0.^9603)

1⅄(12Q)n26=[12Q=(2⅄Qn27c1/2⅄Qn26c1)]=(0.^96261682242990654205607476635514018691588785046728971/0.^9805825242718446601941747572815533)

1⅄(12Q)n27=[12Q=(2⅄Qn28c1/2⅄Qn27c1)]=(0.^0981651376146788990825688073394495412844036697247706422018348623853211009174311926605504587155963302752293577/0.^96261682242990654205607476635514018691588785046728971)

1⅄(12Q)n28=[12Q=(2⅄Qn29c1/2⅄Qn28c1)]=(0.^9646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707/0.^0981651376146788990825688073394495412844036697247706422018348623853211009174311926605504587155963302752293577)

1⅄(12Q)n29=[12Q=(2⅄Qn30c1/2⅄Qn29c1)]=(0.^88976377952755905511811023622047244094481/0.^9646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707)

1⅄(12Q)n30=[12Q=(2⅄Qn31c1/2⅄Qn30c1)]=(0.^969465648854961832061068015267175572519083/0.^88976377952755905511811023622047244094481)

1⅄(12Q)n31=[12Q=(2⅄Qn32c1/2⅄Qn31c1)]=(0.^95620437/0.^969465648854961832061068015267175572519083)

1⅄(12Q)n32=[12Q=(2⅄Qn33c1/2⅄Qn32c1)]=(0.^9856115107913669064748201438848920863309352517/0.^95620437)

1⅄(12Q)n33=[12Q=(2⅄Qn34c1/2⅄Qn33c1)]=(0.^932885906040268456375838926174496651006711409395973154362416107382550335570469798657718120805369127516778523489/0.^9856115107913669064748201438848920863309352517)

1⅄(12Q)n34=[12Q=(1⅄Qn35c1/2⅄Qn34c1)]=(0.^986754966887417218543046357615894039735099337748344370860927152317880794701/0.^932885906040268456375838926174496651006711409395973154362416107382550335570469798657718120805369127516778523489)

1⅄(12Q)n35=[12Q=(2⅄Qn36c1/2⅄Qn35c1)]=(0.^961783439490445859872611464968152866242038216560509554140127388535031847133757/0.^986754966887417218543046357615894039735099337748344370860927152317880794701)

1⅄(12Q)n36=[12Q=(2⅄Qn37c1/2⅄Qn36c1)]=(0.^963190184049079754601226993865030674846625766871165644171779141104294478527607361/0.^961783439490445859872611464968152866242038216560509554140127388535031847133757)

1⅄(12Q)n37=[12Q=(2⅄Qn38c1/2⅄Qn37c1)]=(0.^9760479041916167664670658682634730538922155688622754491017964071856287425149700598802395209580838323353293413173652694610778443113772455089820359281437125748502994011/0.^963190184049079754601226993865030674846625766871165644171779141104294478527607361)

1⅄(12Q)n38=[12Q=(2⅄Qn39c1/2⅄Qn38c1)]=(0.^9653179190751445086705202312138728323699421/0.^9760479041916167664670658682634730538922155688622754491017964071856287425149700598802395209580838323353293413173652694610778443113772455089820359281437125748502994011)

1⅄(12Q)n39=[12Q=(2⅄Qn40c1/2⅄Qn39c1)]=(0.^96648044692737430167597765363128491620111731843575418994413407821229050279329608938547486033519553072625698324022346336871508379888268156424581005586592178770949720670391061452513/0.^9653179190751445086705202312138728323699421)

1⅄(12Q)n40=[12Q=(2⅄Qn41c1/2⅄Qn40c1)]=(0.^9889502762430939226519337016574585635359116022099447513812154696132596685082877292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441/0.^96648044692737430167597765363128491620111731843575418994413407821229050279329608938547486033519553072625698324022346336871508379888268156424581005586592178770949720670391061452513)

1⅄(12Q)n41=[12Q=(2⅄Qn42c1/2⅄Qn41c1)]=(0.^94764397905759162303664921465968586387434554973821989528795811518324607329842931937172774869109/0.^9889502762430939226519337016574585635359116022099447513812154696132596685082877292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441)

1⅄(12Q)n42=[12Q=(2⅄Qn43c1/2⅄Qn42c1)]=(0.^989637304699481864284974093264248704663212435233160621761658031088082901554404145077720207253886010362694300518134715025906735751295336787564766839378238341917098445595854922279792746113/0.^94764397905759162303664921465968586387434554973821989528795811518324607329842931937172774869109)

1⅄(12Q)n43=[12Q=(2⅄Qn44c1/2⅄Qn43c1)]=(0.^979695431/0.^989637304699481864284974093264248704663212435233160621761658031088082901554404145077720207253886010362694300518134715025906735751295336787564766839378238341917098445595854922279792746113)

1⅄(12Q)n44=[12Q=(2⅄Qn45c1/2⅄Qn44c1)]=(0.^989949748743718592964824120603015075025125628140703517587939698492462311557763819095477386934673366834170854271356783919597/0.^979695431)

and so on for variables of ∈1⅄(22Q)n=[12Q=(2⅄Qn2cn/2⅄Qn1cn)] that vary to degrees of stem cycle count variant 1⅄(22Q)ncn


Functions applicable to variables of ∈1⅄(12Q)ncn=[12Q=(2⅄Qn2cn/2⅄Qn1cn)]


X⅄=(n2xn1) example X⅄(12Q)n=[X2Q=(2⅄Qn2cnx2⅄Qn1cn)] 


+⅄=(nncn+nncn) example +⅄(12Q)n=[+2Q=(2⅄Qn2cn+2⅄Qn1cn)]


1-⅄=(n2-n1) example 1-⅄(12Q)n=[2-2Q=(1⅄Qn2cn-2⅄Qn1cn)]


3rd tier of Q and 4th divide of P prime base quotient ratios

Then example 1⅄(13Q)n1 of (22Qn2c1/22Qn1c1)] so

1⅄(13Q)n1 of (22Qn2c1/22Qn1c1)]=(1.190475/1)=1.190475

1⅄(13Q)n2 of (22Qn3c1/22Qn2c1)]=(0.^882000/1.190475)=^0.74088 or 0.74088^074088

1⅄(13Q)n3 of (22Qn4c1/22Qn4c1)]=(1.3431/0.^882000)

1⅄(13Q)n4 of (22Qn5c1/22Qn4c1)]=(0.9037442192^522405/1.3431)

1⅄(13Q)n5 of (22Qn6c1/22Qn5c1)]=(1.17^0040485829959630/0.9037442192^522405)

1⅄(13Q)n6 of (22Qn7c1/22Qn6c1)]=(0.9232^736572890025584679383631713554996444089514066496172914677749360613819973501278772378525855854219948849114091148337595907937620560102301790290561/1.17^0040485829959630)

1⅄(13Q)n7 of (22Qn8c1/22Qn7c1)]=(0.960072^595281306715063616878306896551724137940635199110707803992741431940963702359346642564246727949183303085309056251742286751361162484572542649727767695195825675317604355716888003620163339382940109852993595281306715063616878306896551724137940635199110707803992741431940963702359346642564246727949183303085309056251742286751361162484572542649727767695195825675317604355716888003620163339382940109852993/0.9232^736572890025584679383631713554996444089514066496172914677749360613819973501278772378525855854219948849114091148337595907937620560102301790290561)


1⅄(13Q)n8 of (22Qn9c1/22Qn8c1)]=[(2⅄Qn10c1/2⅄Qn9c1)/(2⅄Qn9c1/2⅄Qn8c1)]


1⅄(13Q)n9 of (22Qn10c1/22Qn9c1)]=[(2⅄Qn11c1/2⅄Qn10c1)/(2⅄Qn10c1/2⅄Qn9c1)]


and so on for variables of ∈1⅄(13Q)ncn of (22Qn2c1/22Qn1c1)] from 2⅄Q variables of Prime P base consecutives


4th tier of Q and 5th divide of P prime base quotient ratios

Then example 1⅄(14Q)n1 of [(1⅄(13Q)n2~(22Qn3c1/22Qn2c1)]/22Qn1c1) / 1⅄(13Q)n1~(22Qn2c1/22Qn1c1)]] so

1⅄(14Q)n1 of [(1⅄(13Q)n2/1⅄(13Q)n1=[(0.^882000/1.190475)/(1.190475/1)]=(0.74088/1.190475)=0.6^223398

1⅄(14Q)n2 of [(1⅄(13Q)n3/1⅄(13Q)n2=[(22Qn4c1/22Qn4c1)/(22Qn3c1/22Qn2c1)]

and so on for variables of ∈1⅄(14Q)n1 of [(1⅄(13Q)n2/1⅄(13Q)n1 from variables of ∈1⅄(13Q)ncn of (22Qn2c1/22Qn1c1)] derived from  2⅄Q variables of Prime P base consecutives


⅄Q Alternate Base Path Variants 2nd tier of Q and third divide of P prime base quotient ratios

1(1Qn2/1Qn1) and 1(2Qn2/2Qn1) are the first ratio definitions of the sets structured from each equation.

12Q for each is then respectably 12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1)

Then if 

L=1(1Qn2/2Qn1)

K=2(1Qn1/2Qn2)

U=1(2Qn2/1Qn1)

J=2(2Qn1/1Qn2)

Path Set 12Q pertains to base equations

12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1) and (L) 12Q of (1Qn2/2Qn1) and (U) 12Q of (2Qn2/1Qn1)

So then 

2(1Qn1/1Qn2) and 2(2Qn1/2Qn2) for 22Q each is then respectably 22Q of (1Qn1/1Qn2) and 22Q of (2Qn1/2Qn2) that differ from sets ∈L ∈K ∈U and ∈J

22Qn1 of (1Qn1/1Qn2)=(1.5/1.^6)

22Qn2 of (1Qn2/1Qn3)=(1.^6/1.4)

22Qn3 of (1Qn3/1Qn4)=(1.4/1.^571428)

22Qn4 of (1Qn4/1Qn5)=(1.^571428/1.^18)

22Qn5 of (1Qn5/1Qn6)=(1.^18/1.^307692)

22Qn6 of (1Qn6/1Qn7)=(1.^307692/1.^1176470588235294)

22Qn7 of (1Qn7/1Qn8)=(1.^1176470588235294/1.^210526315789473684)

22Qn8 of (1Qn8/1Qn9)=(1.^210526315789473684/1.^2608695652173913043478)

22Qn9 of (1Qn9/1Qn10)=(1.^2608695652173913043478/1.^0689655172413793103448275862)

22Qn10 of (1Qn10/1Qn11)=(1.^0689655172413793103448275862/1.^193548387096774)

22Qn11 of (1Qn11/1Qn12)=(1.^193548387096774/1.^108)

22Qn12 of (1Qn12/1Qn13)=(1.^108/1.^04878)

22Qn13 of (1Qn13/1Qn14)=(1.^04878/1.^093023255813953488372)

22Qn14 of (1Qn14/1Qn15)=(1.^093023255813953488372/1.^12765957446808510638297872340425531914893610702)

22Qn15 of (1Qn15/1Qn16)=(1.^12765957446808510638297872340425531914893610702/1.^1132075471698)

22Qn16 of (1Qn16/1Qn17)=(1.^1132075471698/1.^0338983050847457627118644067796610169491525423728813559322)

22Qn17 of (1Qn17/1Qn18)=(1.^0338983050847457627118644067796610169491525423728813559322/1.^098360655737704918032786885245901639344262295081967213114754)

22Qn18 of (1Qn18/1Qn19)=(1.^098360655737704918032786885245901639344262295081967213114754/1.^059701492537313432835820895522388)

22Qn19 of (1Qn19/1Qn20)=(1.^059701492537313432835820895522388/1.^02816901408450704225352112676056338)

22Qn20 of (1Qn20/1Qn21)=(1.^02816901408450704225352112676056338/1.^08219178)

22Qn21 of (1Qn21/1Qn22)=(1.^08219178/1.^0506329113924)

22Qn22 of (1Qn22/1Qn23)=(1.^0506329113924/1.^07228915662650602409638554216867469879518)

22Qn23 of (1Qn23/1Qn24)=(1.^07228915662650602409638554216867469879518/1.^08988764044943820224719101123595505617977528)

22Qn24 of (1Qn24/1Qn25)=(1.^08988764044943820224719101123595505617977528/1.^04123092783505154639175257731958762886597938144329896907216494845360820618)

22Qn25 of (1Qn25/1Qn26)=(1.^04123092783505154639175257731958762886597938144329896907216494845360820618/1.^0198)

22Qn26 of (1Qn26/1Qn27)=(1.^0198/1.^0388349514563106796111662136504854368932)

22Qn27 of (1Qn27/1Qn28)=(1.^0388349514563106796111662136504854368932/1.^01869158878504672897196261682242990654205607476635514)

22Qn28 of (1Qn28/1Qn29)=(1.^01869158878504672897196261682242990654205607476635514/1.^0366972477064220183486238532110091743119266055045871559633027522935779816513758712844)

22Qn29 of (1Qn29/1Qn30)=(1.^0366972477064220183486238532110091743119266055045871559633027522935779816513758712844/1.^123893805308849557522)

22Qn30 of (1Qn30/1Qn31)=(1.^123893805308849557522/1.^031496062992125984251968503937007874015748)

22Qn31 of (1Qn31/1Qn32)=(1.^031496062992125984251968503937007874015748/1.^045801526717557251908396946564885496183206106870229007633587786259541984732824427480916030534351145038167938931297099236641221374)

22Qn32 of (1Qn32/1Qn33)=(1.^045801526717557251908396946564885496183206106870229007633587786259541984732824427480916030534351145038167938931297099236641221374/1.^01459854)

22Qn33 of (1Qn33/1Qn34)=(1.^01459854/1.^071942446043165474820143884892086330935251798561151080291955395683453237410)

22Qn34 of (1Qn34/1Qn35)=(1.^071942446043165474820143884892086330935251798561151080291955395683453237410/1.^01343624295302)

22Qn35 of (1Qn35/1Qn36)=(1.^01343624295302/1.^0397350993377483443708609271523178807284768211920529801324503311258278145695364238410596026490066225165562913907218543046357615894)

22Qn36 of (1Qn36/1Qn37)=(1.^0397350993377483443708609271523178807284768211920529801324503311258278145695364238410596026490066225165562913907218543046357615894/1.^038216560509554140127388535031847133757961783439490445859872611464968152866242)

22Qn37 of (1Qn37/1Qn38)=(1.^038216560509554140127388535031847133757961783439490445859872611464968152866242/1.^024539877300613496932515337423312883435582822085889570552147239263803680981595092)

22Qn38 of (1Qn38/1Qn39)=(1.^024539877300613496932515337423312883435582822085889570552147239263803680981595092/1.^0359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239520958083832335329341317365269461077844311377245508982)

22Qn39 of (1Qn39/1Qn40)=(1.^0359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239520958083832335329341317365269461077844311377245508982/1.^034682080924554913294797687861271676300578)

22Qn40 of (1Qn40/1Qn41)=(1.^034682080924554913294797687861271676300578/1.^0111731843575418994413407821229050279329608936536312849162)

22Qn41 of (1Qn41/1Qn42)=(1.^0111731843575418994413407821229050279329608936536312849162/1.^005524861878453038674033149171270718232044198895027624309392265193370165745856353591160220994475138121546961325966850828729281767955801104972375690607734806629834254143646408839779)

22Qn42 of (1Qn42/1Qn43)=(1.^005524861878453038674033149171270718232044198895027624309392265193370165745856353591160220994475138121546961325966850828729281767955801104972375690607734806629834254143646408839779/1.^01047120418848167539267015706806282722513089005235602094240837696335078534031413612565445026178)

22Qn43 of (1Qn43/1Qn44)=(1.^01047120418848167539267015706806282722513089005235602094240837696335078534031413612565445026178/1.^02072538860103626943005181347150259067357512953367875647668393782383419689119170984455958549222797927461139896373069948186528497409326424870466321243523316062176165803108808290155440414507772)

22Qn44 of (1Qn44/1Qn45)=(1.^02072538860103626943005181347150259067357512953367875647668393782383419689119170984455958549222797927461139896373069948186528497409326424870466321243523316062176165803108808290155440414507772/1.^01015228426395939086294416243654822335025380710659898477157360406091370558375634517766497461928934)

Again ⅄Q Alternate Base Path Variants 2nd tier of Q and third divide of P prime base quotient ratios

1(1Qn2/1Qn1) and 1(2Qn2/2Qn1) are the first ratio definitions of the sets structured from each equation.

12Q for each is then respectably 12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1)

Then if 

L=1(1Qn2/2Qn1)

K=2(1Qn1/2Qn2)

U=1(2Qn2/1Qn1)

J=2(2Qn1/1Qn2)

Path Set 12Q pertains to base equations

12Q of (1Qn2/1Qn1) and 12Q of (2Qn2/2Qn1) and (L) 12Q of (1Qn2/2Qn1) and (U) 12Q of (2Qn2/1Qn1)

So then 

2(1Qn1/1Qn2) and 2(2Qn1/2Qn2) for 22Q each is then respectably 22Q of (1Qn1/1Qn2) and 22Q of (2Qn1/2Qn2) that differ from sets ∈L ∈K ∈U and ∈J

22Qn1 of (2Qn1/2Qn2)=(0.^6/0.6)

22Qn2 of (2Qn2/2Qn3)=(0.6/0.^714285)

22Qn3 of (2Qn3/2Qn4)=(0.^714285/0.^63)

22Qn4 of (2Qn4/2Qn5)=(0.^63/0.^846153)

22Qn5 of (2Qn5/2Qn6)=(0.^846153/0.^7647058823529411)

22Qn6 of (2Qn6/2Qn7)=(0.^7647058823529411/0.^894736842105263157)

22Qn7 of (2Qn7/2Qn8)=(0.^894736842105263157/0.^8260869565217391304347)

22Qn8 of (2Qn8/2Qn9)=(0.^8260869565217391304347/0.^7931034482758620689655172413)

22Qn9 of (2Qn9/2Qn10)=(0.^7931034482758620689655172413/0.^935483870967741)

22Qn10 of (2Qn10/2Qn11)=(0.^935483870967741/0.^837)

22Qn11 of (2Qn11/2Qn12)=(0.^837/0.^9024390243)

22Qn12 of (2Qn12/2Qn13)=(0.^9024390243/0.^953488372093023255813)

22Qn13 of (2Qn13/2Qn14)=(0.^953488372093023255813/0.^9148936170212765957446808510638297872340425531)

22Qn14 of (2Qn14/2Qn15)=(0.^9148936170212765957446808510638297872340425531/0.^88679245283018867924528301)

22Qn15 of (2Qn15/2Qn16)=(0.^88679245283018867924528301/0.^8983050847457627118644067796610169491525423728813559322033)

22Qn16 of (2Qn16/2Qn17)=(0.^8983050847457627118644067796610169491525423728813559322033/0.^967213114754098360655737704918032786885245901639344262295081)

22Qn17 of (2Qn17/2Qn18)=(0.^967213114754098360655737704918032786885245901639344262295081/0.^910447761194029850746268656716417)

22Qn18 of (2Qn18/2Qn19)=(0.^910447761194029850746268656716417/0.^94366197183098591549295774647887323)

22Qn19 of (2Qn19/2Qn20)=(0.^94366197183098591549295774647887323/0.^97260273)

22Qn20 of (2Qn20/2Qn21)=(0.^97260273/0.^9240506329113)

22Qn21 of (2Qn21/2Qn22)=(0.^9240506329113/0.^95180722891566265060240963855421686746987)

22Qn22 of (2Qn22/2Qn23)=(0.^95180722891566265060240963855421686746987/0.^93258426966292134831460674157303370786516853)

22Qn23 of (2Qn23/2Qn24)=(0.^93258426966292134831460674157303370786516853/0.^917525773195876288659793814432989690721649484536082474226804123711340206185567010309278350515463)

22Qn24 of (2Qn24/2Qn25)=(0.^917525773195876288659793814432989690721649484536082474226804123711340206185567010309278350515463/0.^9603)

22Qn25 of (2Qn25/2Qn26)=(0.^9603/0.^9805825242718446601941747572815533)

22Qn26 of (2Qn26/2Qn27)=(0.^9805825242718446601941747572815533/0.^96261682242990654205607476635514018691588785046728971)

22Qn27 of (2Qn27/2Qn28)=(0.^96261682242990654205607476635514018691588785046728971/0.^0981651376146788990825688073394495412844036697247706422018348623853211009174311926605504587155963302752293577)

22Qn28 of (2Qn28/2Qn29)=(0.^0981651376146788990825688073394495412844036697247706422018348623853211009174311926605504587155963302752293577/0.^9646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707)

22Qn29 of (2Qn29/2Qn30)=(0.^9646017699115044247787610619469026548672566371681415929203539823008849557522123893805309734513274336283185840707/0.^88976377952755905511811023622047244094481)

22Qn30 of (2Qn30/2Qn31)=(0.^88976377952755905511811023622047244094481/0.^969465648854961832061068015267175572519083)

22Qn31 of (2Qn31/2Qn32)=(0.^969465648854961832061068015267175572519083/0.^95620437)

22Qn32 of (2Qn32/2Qn33)=(0.^95620437/0.^9856115107913669064748201438848920863309352517)

22Qn33 of (2Qn33/2Qn34)=(0.^9856115107913669064748201438848920863309352517/0.^932885906040268456375838926174496651006711409395973154362416107382550335570469798657718120805369127516778523489)

22Qn34 of (2Qn34/2Qn35)=(0.^932885906040268456375838926174496651006711409395973154362416107382550335570469798657718120805369127516778523489/0.^986754966887417218543046357615894039735099337748344370860927152317880794701)

22Qn35 of (2Qn35/2Qn36)=(0.^986754966887417218543046357615894039735099337748344370860927152317880794701/0.^961783439490445859872611464968152866242038216560509554140127388535031847133757)

22Qn36 of (2Qn36/2Qn37)=(0.^961783439490445859872611464968152866242038216560509554140127388535031847133757/0.^963190184049079754601226993865030674846625766871165644171779141104294478527607361)

22Qn37 of (2Qn37/2Qn38)=(0.^963190184049079754601226993865030674846625766871165644171779141104294478527607361/0.^9760479041916167664670658682634730538922155688622754491017964071856287425149700598802395209580838323353293413173652694610778443113772455089820359281437125748502994011)

22Qn38 of (2Qn38/2Qn39)=(0.^9760479041916167664670658682634730538922155688622754491017964071856287425149700598802395209580838323353293413173652694610778443113772455089820359281437125748502994011/0.^9653179190751445086705202312138728323699421)

22Qn39 of (2Qn39/2Qn40)=(0.^9653179190751445086705202312138728323699421/0.^96648044692737430167597765363128491620111731843575418994413407821229050279329608938547486033519553072625698324022346336871508379888268156424581005586592178770949720670391061452513)

22Qn40 of (2Qn40/2Qn41)=(0.^96648044692737430167597765363128491620111731843575418994413407821229050279329608938547486033519553072625698324022346336871508379888268156424581005586592178770949720670391061452513/0.^9889502762430939226519337016574585635359116022099447513812154696132596685082877292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441)

22Qn41 of (2Qn41/2Qn42)=(0.^9889502762430939226519337016574585635359116022099447513812154696132596685082877292817679558011049723756906077348066298342541436464088397790055248618784530386740331491712707182320441/0.^94764397905759162303664921465968586387434554973821989528795811518324607329842931937172774869109)

22Qn42 of (2Qn42/2Qn43)=(0.^94764397905759162303664921465968586387434554973821989528795811518324607329842931937172774869109/0.^989637304699481864284974093264248704663212435233160621761658031088082901554404145077720207253886010362694300518134715025906735751295336787564766839378238341917098445595854922279792746113)

22Qn43 of (2Qn43/2Qn44)=(0.^989637304699481864284974093264248704663212435233160621761658031088082901554404145077720207253886010362694300518134715025906735751295336787564766839378238341917098445595854922279792746113/0.^979695431)

22Qn44 of (2Qn44/2Qn45)=(0.^979695431/0.^989949748743718592964824120603015075025125628140703517587939698492462311557763819095477386934673366834170854271356783919597)

Prime ∈12Q and ∈22Q Base Path Variants

11Qn1 and ∈21Qn1 with definition of 3⅄ and 2⅄ and 1⅄ sets in prime base of p division logic.

As 3⅄ is not applicable to prime p numerals having no decimal cn change until decimal ratio cell stem cycles are a Q factor.

2⅄ and 1⅄ are paths of p prime consecutive numerals that divide later and previous as explained.

Now paths of two different Q bases labelled as 1Qn1 are in fact not simply 1Qn1

11Qn1 and 21Qn1 are paths of p prime consecutive numerals 2⅄ and 1

Each of the variant paths of ⅄1Q can then be reapplied to their own three variant paths 3⅄ and 2⅄ and 1⅄ forming new sets that are not the same sets where cn is a variant factor in each set of the next tier stems cycles and cell definitions.

Variables of sets explained below are applicable to functions with prime p fibonacci y and phi φn base numerals through paths 1⅄, 2⅄, 1X, 1+⅄, 1-⅄, 2-⅄, 3nc nncn numerically.

12Q and ∈22Q and ∈32Q then require further definition or symbol notation.

12

12Qn1 of ∈11Qn1 variables is (11Qn2/11Qn1)=(1.^6/1.5)=1.^06 for 11Qn2c1 variable and (11Qn2c2/11Qn1)=(1.^66/1.5)=1.1^06 and so on depending of cn variable factor

12Qn1 of ∈21Qn1 variables is (21Qn2/21Qn1)=(0.6/0.^6)=1 for 21Qn1c1 variable and (21Qn2/21Qn1c2)=(0.6/0.^66)=1.1 and so on depending of cn variable factor

then 

12Qn1 of ∈11Qn and ∈21Qn variables is (11Qn2/21Qn1)=(1.^6/0.^6)=2.^6 depending of cn variable factor c1

and

12Qn1 of ∈21Qn and ∈11Qn variables is (21Qn2/11Qn1)=(0.6/1.5)=0.4

and are crossed variants of two different path sets variables

22

22Qn1 of ∈11Qn1 variables is (11Qn1/11Qn2)

22Qn1 of ∈21Qn1 variables is (21Qn1/21Qn2)

then 

22Qn1 of ∈11Qn and ∈21Qn variables is (11Qn1/21Qn2) depending of cn variable factor

and

22Qn1 of ∈21Qn and ∈11Qn variables is (21Qn1/11Qn2) depending of cn variable factor

and are crossed variants of two different path sets variables

32

32Qn1 of ∈11Qn1 variables is (11Qn1cn/11Qn1cn)

32Qn1 of ∈21Qn1 variables is (21Qn1cn/21Qn1cn)

then 

32Qn1 of ∈11Qn and ∈21Qn variables is (11Qn1cn/21Qn1cn) depending of cn variable factor

and

32Qn1 of ∈21Qn and ∈11Qn variables is (21Qn1cn/11Qn2cn) depending of cn variable factor

and are crossed variants of two different path sets variables

Sets are factorable with AND differ from THESE VARIABLES DEFINITIONS

3rd tiers of Q alternate paths from prime base of ∈31Qcn sets

3⅄(11Qn)cn/(21Qn)cn are not same set ∉ yet path of 3defines variables of same tier level and cn differential factors

and 

3⅄(21Qn)cn/(11Qn)cn are not same set ∉ yet path of 3defines variables of same tier level and cn differential factors

and 

3⅄(11Qn)cn/(11Qn)cn

and 

3⅄(21Qn)cn/(21Qn)cn 

are applicable ratios to phi and y bases and tiers of the paths of φ of many functions as well as prime path variables sets tiers per variant cycle cn.


1⅄ and ∈2⅄ and ∈3⅄ of sets in Q's from P to Y and φ factoring at degrees of cn

13Q=(⅄2Q/⅄2Q)=(⅄1Q/⅄1Q)/(⅄1Q/⅄1Q)=(⅄p/⅄p) that ⅄1Q lacks path root definition of 11Q or 21Q from base prime path ⅄P

23Q=(⅄2Q/⅄2Q)=(⅄1Q/⅄1Q)/(⅄1Q/⅄1Q)=(⅄p/⅄p) that ⅄1Q lacks path root definition of 11Q or 21Q from base prime path ⅄P

33Q=(⅄2Q/⅄2Q)=(⅄1Q/⅄1Q)/(⅄1Q/⅄1Q)=(⅄p/⅄p) that ⅄1Q lacks path root definition of 11Q or 21Q from base prime path ⅄P

So variables of sets ∈13Q, ∈23Q, ∈33Q, ∈12Q, ∈22Q, ∈32Q require definitions of variable from set ∈11Q or ∈21Q from base prime path ⅄P.

32Qn1 of ∈11Qn1 variables is (11Qn1/11Qn1)=(1.5/1.5)=1

32Qn2 of ∈11Qn1 variables is (11Qn2c1/11Qn2c2)=(1.^6/1.^66) and so on for cn differentials. . . 

32Qn2 of ∈11Qn1 variables is (11Qn2c2/11Qn2c1)=(1.^66/1.^6) and so on for cn differentials. . . 

32Qn3 of ∈11Qn1 variables is (11Qn3/11Qn3)=(1.4/1.4)=1

32Qn4 of ∈11Qn1 variables is (11Qn4c1/11Qn4c2)=(1.^571428/1.^571428571428) and so on for cn differentials. . . 

32Qn4 of ∈11Qn1 variables is (11Qn4c2/11Qn4c1)=(1.^571428571428/1.^571428) and so on for cn differentials. . . 

32Qn5 of ∈11Qn1 variables is (11Qn5c1/11Qn5c2)=(1.^18/1.^1818) and so on for cn differentials. . . 

32Qn5 of ∈11Qn1 variables is (11Qn5c2/11Qn5c1)=(1.^1818/1.^18) and so on for cn differentials. . . 

32Qn6 of ∈11Qn1 variables is (11Qn6c1/11Qn6c2)=(1.^307692/1.^307692307692) and so on for cn differentials. . . 

32Qn6 of ∈11Qn1 variables is (11Qn6c2/11Qn6c1)=(1.^307692307692/1.^307692) and so on for cn differentials. . . 

32Qn7 of ∈11Qn1 variables is (11Qn7c1/11Qn7c2)=(1.^1176470588235294/1.^11764705882352941176470588235294) and so on for cn differentials. . . 

32Qn7 of ∈11Qn1 variables is (11Qn7c2/11Qn7c1)=(1.^11764705882352941176470588235294/1.^1176470588235294) and so on for cn differentials. . . 

32Qn8 of ∈11Qn1 variables is (11Qn8c1/11Qn8c2)=(1.^210526315789473684/1.^210526315789473684210526315789473684) and so on for cn differentials. . . 

32Qn8 of ∈11Qn1 variables is (11Qn8c2/11Qn8c1)=(1.^210526315789473684210526315789473684/1.^210526315789473684) and so on for cn differentials. . . 

Beginning with 

32Qn1 of ∈21Qn1 variables is (21Qn1cn/21Qn1cn)=(0.^6/0.^6)=1

32Qn1 of ∈21Qn1 variables is (21Qn1c1/21Qn1c2)=(0.^6/0.^66)

32Qn1 of ∈21Qn1 variables is (21Qn1c2/21Qn1c1)=(0.^66/0.^6)=1.1 and so on for cn of variable ∈32Qn1 of ∈21Qn1cn

32Qn2 of ∈21Qn1 variables is (21Qn2cn/21Qn2cn)=(0.6/0.6)=1 and has no cn variable change potential in decimal.

32Qn3 of ∈21Qn1 variables is (21Qn3cn/21Qn3cn)=(0.^714285/0.^714285)

32Qn3 of ∈21Qn1 variables is (21Qn3c1/21Qn3c2)=(0.^714285/0.^714285714285)

32Qn3 of ∈21Qn1 variables is (21Qn3c2/21Qn3c1)=(0.^714285714285/0.^714285) and so on for cn of variable ∈32Qn3 of ∈21Qn1cn

32Qn4 of ∈21Qn1 variables is (21Qn4cn/21Qn4cn)=(0.^63/0.^63)

32Qn4 of ∈21Qn1 variables is (21Qn4c1/21Qn4c2)=(0.^63/0.^6363)

32Qn4 of ∈21Qn1 variables is (21Qn4c2/21Qn4c1)=(0.^6363/0.^63) and so on for cn of variable ∈32Qn4 of ∈21Qn1cn

32Qn5 of ∈21Qn1 variables is (21Qn5cn/21Qn5cn)=(0.^846153/0.^846153)

32Qn5 of ∈21Qn1 variables is (21Qn5c1/21Qn5c2)=(0.^846153/0.^846153846153)

32Qn5 of ∈21Qn1 variables is (21Qn5c2/21Qn5c1)=(0.^846153846153/0.^846153) and so on for cn of variable ∈32Qn5 of ∈21Qn1cn

32Qn6 of ∈21Qn1 variables is (21Qn6cn/21Qn6cn)=(0.^7647058823529411/0.^7647058823529411)

32Qn6 of ∈21Qn1 variables is (21Qn6c1/21Qn6c2)=(0.^7647058823529411/0.^76470588235294117647058823529411)

32Qn6 of ∈21Qn1 variables is (21Qn6c2/21Qn6c1)=(0.^76470588235294117647058823529411/0.^7647058823529411) and so on for cn of variable ∈32Qn6 of ∈21Qn1cn

32Qn7 of ∈21Qn1 variables is (21Qn7cn/21Qn7cn)=(0.^894736842105263157/0.^894736842105263157)

32Qn7 of ∈21Qn1 variables is (21Qn7c1/21Qn7c2)=(0.^894736842105263157/0.^894736842105263157894736842105263157)

32Qn7 of ∈21Qn1 variables is (21Qn7c2/21Qn7c1)=(0.^894736842105263157894736842105263157/0.^894736842105263157) and so on for cn of variable ∈32Qn7 of ∈21Qn1cn

32Qn8 of ∈21Qn1 variables is (21Qn8cn/21Qn8cn)=(0.^8260869565217391304347/0.^8260869565217391304347)

32Qn8 of ∈21Qn1 variables is (21Qn8c1/21Qn8c2)=(0.^8260869565217391304347/0.^82608695652173913043478260869565217391304347)

32Qn8 of ∈21Qn1 variables is (21Qn8c2/21Qn8c1)=(0.^82608695652173913043478260869565217391304347/0.^8260869565217391304347) and so on for cn of variable ∈32Qn8 of ∈21Qn1cn

Beginning with

32Qn1 of ∈11Qn and ∈21Qn variables is (11Qn1cn/21Qn1cn) depending of cn variable factor

32Qn1 of ∈11Qn and ∈21Qn variables is 

(11Qn1c1/21Qn1c1)=(1.5/0.^6)

(11Qn1c1/21Qn1c2)=(1.5/0.^66)

(11Qn1c1/21Qn1c3)=(1.5/0.^666) and so on for cn variable factor

32Qn2 of ∈11Qn and ∈21Qn variables is 

(11Qn2c1/21Qn2c1)=(1.^6/0.6)

(11Qn2c2/21Qn2c1)=(1.^66/0.6)

(11Qn2c3/21Qn2c1)=(1.^666/0.6) and so on for cn variable factor

32Qn3 of ∈11Qn and ∈21Qn variables is 

(11Qn3c1/21Qn3c1)=(1.4/0.^714285)

(11Qn3c1/21Qn3c2)=(1.4/0.^714285714285)

(11Qn3c1/21Qn3c3)=(1.4/0.^714285714285714285) and so on for cn variable factor

32Qn4 of ∈11Qn and ∈21Qn variables is 

(11Qn4c1/21Qn4c1)=(1.^571428/0.^63)

(11Qn4c1/21Qn4c2)=(1.^571428/0.^6363)

(11Qn4c2/21Qn4c1)=(1.^571428571428/0.^63)

(11Qn4c3/21Qn4c2)=(1.^571428571428571428/0.^6363)

(11Qn4c2/21Qn4c3)=(1.^571428571428/0.^636363)

(11Qn4c3/21Qn4c1)=(1.^571428571428571428/0.^63)

(11Qn4c1/21Qn4c3)=(1.^571428/0.^636363) and so on for cn variable factor

32Qn5 of ∈11Qn and ∈21Qn variables is 

(11Qn5c1/21Qn5c1)=(1.^18/0.^846153)

(11Qn5c1/21Qn5c2)=(1.^18/0.^846153846153)

(11Qn5c2/21Qn5c1)=(1.^1818/0.^846153) and so on for cn variable factor

32Qn6 of ∈11Qn and ∈21Qn variables is 

(11Qn6c1/21Qn6c1)=(1.^307692/0.^7647058823529411)

(11Qn6c1/21Qn6c2)=(1.^307692/0.^76470588235294117647058823529411)

(11Qn6c2/21Qn6c1)=(1.^307692307692/0.^7647058823529411) and so on for cn variable factor

32Qn7 of ∈11Qn and ∈21Qn variables is 

(11Qn7c1/21Qn7c1)=(1.^1176470588235294/0.^894736842105263157)

(11Qn7c1/21Qn7c2)=(1.^1176470588235294/0.^894736842105263157894736842105263157)

(11Qn7c2/21Qn7c1)=(1.^11764705882352941176470588235294/0.^894736842105263157) and so on for cn variable factor

32Qn8 of ∈11Qn and ∈21Qn variables is 

(11Qn8c1/21Qn8c1)=(1.^210526315789473684/0.^8260869565217391304347)

(11Qn8c1/21Qn8c2)=(1.^210526315789473684/0.^82608695652173913043478260869565217391304347)

(11Qn8c2/21Qn8c1)=(1.^210526315789473684210526315789473684/0.^8260869565217391304347) and so on for cn variable factor

Beginning with

32Qn1 of ∈21Qn and ∈11Qn variables is (21Qn1cn/11Qn2cn) depending of cn variable factor

32Qn1 of ∈21Qn and ∈11Qn variables is 

(21Qn1c1/11Qn1c1)=(0.^6/1.5)

(21Qn1c2/11Qn1c1)=(0.^66/1.5)

(21Qn1c3/11Qn1c1)=(0.^666/1.5) and so on for cn variable factor

32Qn2 of ∈21Qn and ∈11Qn variables is 

(21Qn2c1/11Qn2c1)=(0.6/1.^6)

(21Qn2c1/11Qn2c2)=(0.6/1.^66)

(21Qn2c1/11Qn2c3)=(0.6/1.^666) and so on for cn variable factor

32Qn3 of ∈21Qn and ∈11Qn variables is 

(21Qn3c1/11Qn3c1)=(0.^714285/1.4)

(21Qn3c2/11Qn3c1)=(0.^714285714285/1.4)

(21Qn3c3/11Qn3c1)=(0.^714285714285714285/1.4) and so on for cn variable factor

32Qn4 of ∈21Qn and ∈11Qn variables is 

(21Qn4c1/11Qn4c1)=(0.^63/1.^571428)

(21Qn4c1/11Qn4c2)=(0.^63/1.^571428571428)

(21Qn4c2/11Qn4c1)=(0.^6363/1.^571428)

(21Qn4c3/11Qn4c2)=(0.^636363/1.^571428571428)

(21Qn4c2/11Qn4c3)=(0.^6363/1.^571428571428571428)

(21Qn4c3/11Qn4c1)=(0.^636363/1.^571428)

(21Qn4c1/11Qn4c3)=(0.^63/1.^571428571428571428) and so on for cn variable factor

32Qn5 of ∈21Qn and ∈11Qn variables is 

(21Qn5c1/11Qn5c1)=(0.^846153/1.^18)

(21Qn5c1/11Qn5c2)=(0.^846153/1.^1818)

(21Qn5c2/11Qn5c1)=(0.^846153846153/1.^18) and so on for cn variable factor

32Qn6 of ∈21Qn and ∈11Qn variables is 

(21Qn6c1/11Qn6c1)=(0.^7647058823529411/1.^307692)

(21Qn6c1/11Qn6c2)=(0.^7647058823529411/1.^307692307692)

(21Qn6c2/11Qn6c1)=(0.^76470588235294117647058823529411/1.^307692) and so on for cn variable factor

32Qn7 of ∈21Qn and ∈11Qn variables is 

(21Qn7c1/11Qn7c1)=(0.^894736842105263157/1.^1176470588235294)

(21Qn7c1/11Qn7c2)=(0.^894736842105263157/1.^11764705882352941176470588235294)

(21Qn7c2/11Qn7c1)=(0.^894736842105263157894736842105263157/1.^1176470588235294) and so on for cn variable factor

32Qn8 of ∈21Qn and ∈11Qn variables is 

(21Qn8c1/11Qn8c1)=(0.^8260869565217391304347/1.^210526315789473684)

(21Qn8c1/11Qn8c2)=(0.^8260869565217391304347/1.^210526315789473684210526315789473684)

(21Qn8c2/11Qn8c1)=(0.^82608695652173913043478260869565217391304347/1.^210526315789473684) and so on for cn variable factor



Potential Path functions of variables 1⅄Qn and 2⅄Qn


nncn(Qn)(2)=(Qn)x(Qn)

nncn(Qn)(3)=(Qn)x(Qn)x(Qn)

nncn(Qn)(4)=(Qn)x(Qn)x(Qn)x(Qn)


1ᐱ(Q)

1ᐱ(Qn2/An1), ∈1ᐱ(Qn2/Bn1), ∈1ᐱ(Qn2/Dn1), ∈1ᐱ(Qn2/En1), ∈1ᐱ(Qn2/Fn1), ∈1ᐱ(Qn2/Gn1), ∈1ᐱ(Qn2/Hn1), ∈1ᐱ(Qn2/In1), ∈1ᐱ(Qn2/Jn1), ∈1ᐱ(Qn2/Kn1), ∈1ᐱ(Qn2/Ln1), ∈1ᐱ(Qn2/Mn1), ∈1ᐱ(Qn2/Nn1), ∈1ᐱ(Qn2/On1), ∈1ᐱ(Qn2/Pn1), 1ᐱ(Qn2/Qn1), ∈1ᐱ(Qn2/Rn1), ∈1ᐱ(Qn2/Sn1), ∈1ᐱ(Qn2/Tn1), ∈1ᐱ(Qn2/Un1),  ∈1ᐱ(Qn2/Vn1), ∈1ᐱ(Qn2/Wn1), ∈1ᐱ(Qn2/Yn1), ∈1ᐱ(Qn2/Zn1), ∈1ᐱ(Qn2n1), ∈1ᐱ(Qn2n1), 1ᐱ(Qn2n1),1ᐱ(Qn2cn/n1cn), ∈1ᐱ(Qn2cn/n1cn), ∈1ᐱ(Qn1cn/∘⧊°n1cn), ∈1ᐱ(Qn2cn/∘∇°n1cn)


2ᐱ(Q)

2ᐱ(Qn1/An2), ∈2ᐱ(Qn1/Bn2), ∈2ᐱ(Qn1/Dn2), ∈2ᐱ(Qn1/En2), ∈2ᐱ(Qn1/Fn2), ∈2ᐱ(Qn1/Gn2), ∈2ᐱ(Qn1/Hn2), ∈2ᐱ(Qn1/In2), ∈2ᐱ(Qn1/Jn2), ∈2ᐱ(Qn1/Kn2), ∈2ᐱ(Qn1/Ln2), ∈2ᐱ(Qn1/Mn2), ∈2ᐱ(Qn1/Nn2), ∈2ᐱ(Qn1/On2), ∈2ᐱ(Qn1/Pn2), 2ᐱ(Qn1/Qn2), ∈2ᐱ(Qn1/Rn2), ∈2ᐱ(Qn1/Sn2), ∈2ᐱ(Qn1/Tn2),∈2ᐱ(Qn1/Un2),  ∈2ᐱ(Qn1/Vn2), ∈2ᐱ(Qn1/Wn2), ∈2ᐱ(Qn1/Yn2), ∈2ᐱ(Qn1/Zn2), ∈2ᐱ(Qn1n2), ∈2ᐱ(Qn1n2), 2ᐱ(Qn1n2), 2ᐱ(Qn1cn/ᐱn2cn), ∈2ᐱ(Qn1cn/ᗑn2cn), ∈2ᐱ(Qn1cn/∘⧊°n2cn), ∈2ᐱ(Qn1cn/∘∇°n2cn)


3ᐱ(Q)

3ᐱ(Qncn/Ancn), ∈3ᐱ(Qncn/Bncn), ∈3ᐱ(Qncn/Dncn), ∈3ᐱ(Qncn/Encn), ∈3ᐱ(Qncn/Fncn), ∈3ᐱ(Qncn/Gncn), ∈3ᐱ(Qncn/Hncn), ∈3ᐱ(Qncn/Incn), ∈3ᐱ(Qncn/Jncn), ∈3ᐱ(Qncn/Kncn), ∈3ᐱ(Qncn/Lncn), ∈3ᐱ(Qncn/Mncn), ∈3ᐱ(Qncn/Nncn), ∈3ᐱ(Qncn/Oncn), ∈3ᐱ(Qncn/Pncn), 3ᐱ(Qncn/Qncn), ∈3ᐱ(Qncn/Rncn), ∈3ᐱ(Qncn/Sncn), ∈3ᐱ(Qncn/Tncn),∈3ᐱ(Qncn/Uncn),  ∈3ᐱ(Qncn/Vncn), ∈3ᐱ(Qncn/Wncn), ∈3ᐱ(Qncn/Yncn), ∈3ᐱ(Qncn/Zncn), ∈3ᐱ(Qncnncn), ∈3ᐱ(Qncnncn), 3ᐱ(Qncnncn), 3ᐱ(Qncn/ᐱncn), ∈3ᐱ(Qncn/ᗑncn), ∈3ᐱ(Qncn/∘⧊°ncn), ∈3ᐱ(Qncn/∘∇°ncn)


n⅄Xᐱ(Q)

n⅄Xᐱ(QnxAn), ∈n⅄Xᐱ(QnxBn), ∈n⅄Xᐱ(QnxDn), ∈n⅄Xᐱ(QnxEn), ∈n⅄Xᐱ(QnxFn), ∈n⅄Xᐱ(QnxGn), ∈n⅄Xᐱ(QnxHn), ∈n⅄Xᐱ(QnxIn), ∈n⅄Xᐱ(QnxJn), ∈n⅄Xᐱ(QnxKn), ∈n⅄Xᐱ(QnxLn), ∈n⅄Xᐱ(QnxMn), ∈n⅄Xᐱ(QnxNn), ∈n⅄Xᐱ(QnxOn), ∈n⅄Xᐱ(QnxPn), n⅄Xᐱ(QnxQn), ∈n⅄Xᐱ(QnxRn), ∈n⅄Xᐱ(QnxSn), ∈n⅄Xᐱ(QnxTn),∈n⅄Xᐱ(QnxUn),  ∈n⅄Xᐱ(QnxVn), ∈n⅄Xᐱ(QnxWn), ∈n⅄Xᐱ(QnxYn), ∈n⅄Xᐱ(QnxZn), ∈n⅄Xᐱ(Qnn), ∈n⅄Xᐱ(Qnn), n⅄Xᐱ(Qnn), n⅄Xᐱ(Qncnxᐱncn), ∈n⅄Xᐱ(Qncnxᗑncn), ∈n⅄Xᐱ(Qncnx∘⧊°ncn), ∈n⅄Xᐱ(Qncnx∘∇°ncn)


n+⅄ᐱ(Q

n+⅄ᐱ(Qn+An), ∈n+⅄ᐱ(Qn+Bn), ∈n+⅄ᐱ(Qn+Dn), ∈n+⅄ᐱ(Qn+En), ∈n+⅄ᐱ(Qn+Fn), ∈n+⅄ᐱ(Qn+Gn), ∈n+⅄ᐱ(Qn+Hn), ∈n+⅄ᐱ(Qn+In), ∈n+⅄ᐱ(Qn+Jn), ∈n+⅄ᐱ(Qn+Kn), ∈n+⅄ᐱ(Qn+Ln), ∈n+⅄ᐱ(Qn+Mn), ∈n+⅄ᐱ(Qn+Nn), ∈n+⅄ᐱ(Qn+On), ∈n+⅄ᐱ(Qn+Pn), n+⅄ᐱ(Qn+Qn), ∈n+⅄ᐱ(Qn+Rn), ∈n+⅄ᐱ(Qn+Sn), ∈n+⅄ᐱ(Qn+Tn),∈n+⅄ᐱ(Qn+Un),  ∈n+⅄ᐱ(Qn+Vn), ∈n+⅄ᐱ(Qn+Wn), ∈n+⅄ᐱ(Qn+Yn), ∈n+⅄ᐱ(Qn+Zn), ∈n+⅄ᐱ(Qnn), ∈n+⅄ᐱ(Qnn), n+⅄ᐱ(Qnn), n+⅄ᐱ(Qncn+ᐱncn), ∈n+⅄ᐱ(Qncn+ᗑncn), ∈n+⅄ᐱ(Qncn+∘⧊°ncn), ∈n+⅄ᐱ(Qncn+∘∇°ncn)


1-⅄ᐱ(Q)

1-⅄ᐱ(Qn2-An1), ∈1-⅄ᐱ(Qn2-Bn1), ∈1-⅄ᐱ(Qn2-Dn1), ∈1-⅄ᐱ(Qn2-En1), ∈1-⅄ᐱ(Qn2-Fn1), ∈1-⅄ᐱ(Qn2-Gn1), ∈1-⅄ᐱ(Qn2-Hn1), ∈1-⅄ᐱ(Qn2-In1), ∈1-⅄ᐱ(Qn2-Jn1), ∈1-⅄ᐱ(Qn2-Kn1), ∈1-⅄ᐱ(Qn2-Ln1), ∈1-⅄ᐱ(Qn2-Mn1), ∈1-⅄ᐱ(Qn2-Nn1), ∈1-⅄ᐱ(Qn2-On1), ∈1-⅄ᐱ(Qn2-Pn1), 1-ᐱ(Qn2-Qn1), ∈1-⅄ᐱ(Qn2-Rn1), ∈1-⅄ᐱ(Qn2-Sn1), ∈1-⅄ᐱ(Qn2-Tn1), ∈1-⅄ᐱ(Qn2-Un1),  ∈1-⅄ᐱ(Qn2-Vn1), ∈1-⅄ᐱ(Qn2-Wn1), ∈1-⅄ᐱ(Qn2-Yn1), ∈1-⅄ᐱ(Qn2-Zn1), ∈1-⅄ᐱ(Qn2n1), ∈1-⅄ᐱ(Qn2n1), 1-⅄ᐱ(Qn2n1), 1-ᐱ(Qn2cn-n1cn), ∈1-ᐱ(Qn2cn-n1cn), ∈1-ᐱ(Qn1cn-∘⧊°n1cn), ∈1-ᐱ(Qn2cn-∘∇°n1cn)


2-⅄ᐱ(Q)

2-⅄ᐱ(Qn1-An2), ∈2-⅄ᐱ(Qn1-Bn2), ∈2-⅄ᐱ(Qn1-Dn2), ∈2-⅄ᐱ(Qn1-En2), ∈2-⅄ᐱ(Qn1-Fn2), ∈2-⅄ᐱ(Qn1-Gn2), ∈2-⅄ᐱ(Qn1-Hn2), ∈2-⅄ᐱ(Qn1-In2), ∈2-⅄ᐱ(Qn1-Jn2), ∈2-⅄ᐱ(Qn1-Kn2), ∈2-⅄ᐱ(Qn1-Ln2), ∈2-⅄ᐱ(Qn1-Mn2), ∈2-⅄ᐱ(Qn1-Nn2), ∈2-⅄ᐱ(Qn1-On2), ∈2-⅄ᐱ(Qn1-Pn2), 2-ᐱ(Qn1-Qn2), ∈2-⅄ᐱ(Qn1-Rn2), ∈2-⅄ᐱ(Qn1-Sn2), ∈2-⅄ᐱ(Qn1-Tn2), ∈2-⅄ᐱ(Qn1-Un2),  ∈2-⅄ᐱ(Qn1-Vn2), ∈2-⅄ᐱ(Qn1-Wn2), ∈2-⅄ᐱ(Qn1-Yn2), ∈2-⅄ᐱ(Qn1-Zn2), ∈2-⅄ᐱ(Qn1-φn2), ∈2-⅄ᐱ(Qn1-Θn2), 2-⅄ᐱ(Qn1-Ψn2), 2-ᐱ(Qn1cn-n2cn), ∈2-ᐱ(Qn1cn-n2cn), ∈2-ᐱ(Qn1cn-∘⧊°n2cn), ∈2-ᐱ(Qn1cn-∘∇°n2cn)


3-⅄ᐱ(nQncn)

3-⅄ᐱ(Qncn-Ancn), ∈3-⅄ᐱ(Qncn-Bncn), ∈3-⅄ᐱ(Qncn-Dncn), ∈3-⅄ᐱ(Qncn-Encn), ∈3-⅄ᐱ(Qncn-Fncn), ∈3-⅄ᐱ(Qncn-Gncn), ∈3-⅄ᐱ(Qncn-Hncn), ∈3-⅄ᐱ(Qncn-Incn), ∈3-⅄ᐱ(Qncn-Jncn), ∈3-⅄ᐱ(Qncn-Kncn), ∈3-⅄ᐱ(Qncn-Lncn), ∈3-⅄ᐱ(Qncn-Mncn), ∈3-⅄ᐱ(Qncn-Nncn), ∈3-⅄ᐱ(Qncn-Oncn), ∈3-⅄ᐱ(Qncn-Pncn), 3-ᐱ(Qncn-Qncn), ∈3-⅄ᐱ(Qncn-Rncn), ∈3-⅄ᐱ(Qncn-Sncn), ∈3-⅄ᐱ(Qncn-Tncn), ∈3-⅄ᐱ(Qncn-Uncn),  ∈3-⅄ᐱ(Qncn-Vncn), ∈3-⅄ᐱ(Qncn-Wncn), ∈3-⅄ᐱ(Qncn-Yncn), ∈3-⅄ᐱ(Qncn-Zncn), ∈3-⅄ᐱ(Qncn-φncn), ∈3-⅄ᐱ(Qncn-Θncn), 3-⅄ᐱ(Qncn-Ψncn), 3-ᐱ(Qncn-ncn), ∈3-ᐱ(Qncn-ncn), ∈3-ᐱ(Qncn-∘⧊°ncn), ∈3-ᐱ(Qncn-∘∇°ncn)


And functions Q quotients of P prime consecutive variables as second factor in equation paths with a Number nNncn

n⅄X(nNncnxnnQncn) and ∈n⅄X(nAncnxnnQncn) through ∈n⅄X(nZncnxnnQncn) and ∈n⅄X(nφncnxnnQncn), n⅄X(nΘncnxnnQncn), n⅄X(nΨncnxnnQncn) . . . and so on.

n(nNncn/nnQncn) and ∈n(nAncn/nnQncn) through n(nZncn/nnQncn) and n(nφncn/nnQncn), n(nΘncn/nnQncn), n(nΨncn/nnQncn) . . . and so on.

n+⅄(nNncn+nnQncn) and ∈n+⅄(nAncn+nnQncn) through ∈n+⅄(nZncn+nnQncn) and ∈n+⅄(nφncn+nnQncn), ∈n+⅄(nΘncn+nnQncn), ∈n+⅄(nΨncn+nnQncn) . . and so on.

n-⅄(nNncn-nnQncn) and ∈n-⅄(nAncn-nnQncn) through ∈n-⅄(nZncn-nnQncn) and ∈n-⅄(nφncn-nnQncn), ∈n-⅄(nΘncn-nnQncn), ∈n-⅄(nΨncn-nnQncn) . . . and so on.



n⅄∀n(NncnxnQncn), n⅄∀n(Nncn/nQncn), n⅄∀n(Nncn+nQncn), and n⅄∀n(Nncn-nQncn) functions for all or for any variables of sequential variables in sets of prime quotient variable functions of complex values nncn(nQncn)(n) determined on cn definition in the ratios.

if you need a 1dir 2dir to 3dir

email@1dir.cc

c.dir.1dir.cc  c.dir.1dir.org  c.dir.1dir.cloud

c://dir