O=∈1⅄(Θn2/φn1)cn
On1=(Θn2/φn1)=(1/0)=0
On2=(Θn3/φn2)=(0.5/1)=0.5
On3=(Θn4/φn3)=(0.^6/2)=0.3 and On3=(Θn4c2/φn3)=(0.^66/2)=0.33 and On3=(Θn4c3/φn3)=(0.^666/2)=0.333 and so on for variants of ncn
On4=(Θn5/φn4)=(0.6/1.5)=0.4
On5=(Θn6/φn5)=(0.625/1.^6)=0.390625 and On5=(Θn6/φn5c2)=(0.625/1.^66)=0.37^65060240963855421686746987951807228915662 or 0.3765060240963855421686746987951807228915662 and so on for variants of ncn
On6=(Θn7/φn6)=(0.^615384/1.6)=0.384615 and On6=(Θn7c2/φn6)=(0.^615384615384/1.6)=0.384615384615 and so on for variants of ncn
On7=(Θn8/φn7)=(0.^619047/1.625)=0.380952
On8=(Θn9/φn8)=(0.6^1764705882352941/1.^615384)=0.38235308683478938134833575174695304645830341268701435695785026965724558371260331908697869980140944 with an extended shell of decimal having a potential of 1,615,383 total digits in the final quotient based on probability.
On9=(Θn10/φn9)=(0.6^18/1.^619047)=0.3817060282993637615214382287852051237549002592265697042766516351903311021854214238376032320247 with an extended shell of decimal having a potential of 1,619,046 total digits in the final quotient based on probability.
On10=(Θn11/φn10)=(0.^6179775280878651685393258764044943820224719101123595505/1.6^1762941)=0.3820266398889626818415262840729969060234086063707011549079093461833140138074022776329221165680957 with an extended shell of decimal having a potential of 161,762,940 total digits in the final quotient based on probability.
On11=(Θn12/φn11)=(0.6180^5/1.6^18)=0.381^9839307787391841779975278121137206427688504326328800988875154511742892459826946847960444993819530284301606922126081582200247218788627935723114956736711990111248454882571075401730531520395550061804697156 or 0.3819839307787391841779975278121137206427688504326328800988875154511742892459826946847960444993819530284301606922126081582200247218788627935723114956736711990111248454882571075401730531520395550061804697156
On12=(Θn13/φn12)=(0.6180257553648064377682403433476394849785407725322060085836909871244635193133047210300429184^54935622317596566/1.^61797752808988764044943820224719101123595505)
On13=(Θn14/φn13)=(0.610079575596814323607427055702917771827585941644562334217506631^294429708196286206893896551724137931034482493368673740053050397875331564986472148514588567639257/1.6180^5)
On14=(Θn15/φn14)=(0.6^18032786885245901639344262295081967213114754098360655737749/1.^61802575107296137339055793991416738197424034334763948497854077253214592274678111587982832)
On15=(Θn16/φn15)=(0.^618034447821681864235055724417426545086119554204660587639311043566362715298885511651469098277608915906788247213779128672745684022289766870/1.6183^0223896551724135014)
and so on for ∈On=1⅄(Θ/φ)cn