Given M=∈2⅄(φ/Q)cn
The definition of Q variable should be accurate to its defining base path where 1⅄Q and 2⅄Q, differ from prime base just as φ and Θ differ in paths 1⅄ and 2⅄ of Y base.
so
M=∈2⅄(φn1/1⅄Qn2)cn
and
M=∈2⅄(φn1/2⅄Qn2)cn
then
Mn1 of ∈2⅄(φn1/1⅄Qn2)=(0/1.^6)=0
Mn2 of ∈2⅄(φn2/1⅄Qn3)=(1/1.4)=0.^714285 or 0.714285
Mn3 of ∈2⅄(φn3/1⅄Qn4)=(2/1.^571428)=1.2727277355373583772212280804465747078453483073993845088670941334887758141002960364712859895585416576 with an extended shell of decimal having a potential of 1,571,427 total digits in the final quotient based on probability.
Mn4 of ∈2⅄(φn4/1⅄Qn5)=(1.5/1.^18)=1.^2711864406779661016949152542372881355932203389830508474576 or 1.2711864406779661016949152542372881355932203389830508474576
Mn5 of ∈2⅄(φn5/1⅄Qn6)=(1.^6/1.^307692)=1.2235296996540469774228182171336981491054468483404349036317420309981249407352801730070995310822 with an extended shell of decimal having a potential of 1,307,691 total digits in the final quotient based on probability.
Mn6 of ∈2⅄(φn6/1⅄Qn7)=(1.6/1.^1176470588235294)=1.4315789473684210677008310249307480810613792097973482216987285241826128599866160440275037893328 with an extended shell of decimal having a potential of 11,176,470,588,235,293 total digits in the final quotient based on probability.
Mn7 of ∈2⅄(φn7/1⅄Qn8)=(1.625/1.^210526315789473684)=1.342391304347826087189981096408317580380866277636229144414063700458474633811141513123212979793242 with an extended shell of decimal having a potential of 1,210,526,315,789,473,684 total digits in the final quotient based on probability.
if M=∈2⅄(φn1/1⅄Qn2)cn
and
M=∈2⅄(φn1/2⅄Qn2)cn
then
Mn1 of ∈2⅄(φn1/2⅄Qn2)=(0/0.6)=0
Mn2 of ∈2⅄(φn2/2⅄Qn3)=(1/0.^714285)=^1.40000 and Mn2 of ∈2⅄(φn2/2⅄Qn3c2)=(1/0.^714285714285)=^1.40000000000
Mn3 of ∈2⅄(φn3/2⅄Qn4)=(2/0.^63)=^3.17460 or ^3.17460317460 and Mn3 of ∈2⅄(φn3/2⅄Qn4c2)=(2/0.^6363)=^3.14317146000 or 3.14317146000314317146000
Mn4 of ∈2⅄(φn4/2⅄Qn5)=(1.5/0.^846153)=^1.77272904545631818359091086363813636540909268181995454722727450000177272904545631818359091086363813636540909268181995454722727450000 or 1.77272904545631818359091086363813636540909268181995454722727450000177272904545631818359091086363813636540909268181995454722727450000177272904545631818359091086363813636540909268181995454722727450000177272904545631818359091086363813636540909268181995454722727450000 and
Mn4 of ∈2⅄(φn4/2⅄Qn5c2)=(1.5/0.^846153846153)=^1.77272727272904545454545631818181818359090909091086363636363813636363636540909090909268181818181995454545454722727272727450000000000 or 1.77272727272904545454545631818181818359090909091086363636363813636363636540909090909268181818181995454545454722727272727450000000000177272727272904545454545631818181818359090909091086363636363813636363636540909090909268181818181995454545454722727272727450000000000
Mn5 of ∈2⅄(φn5/2⅄Qn6)=(1.^6/0.^7647058823529411)=^2.09230769230769251692307692307694400000000000000 or 2.09230769230769251692307692307694400000000000000209230769230769251692307692307694400000000000000 and Mn5 of ∈2⅄(φn5c2/2⅄Qn6)=(1.^66/0.^7647058823529411)=^2.17076923076923098630769230769232940000000000000 or 2.17076923076923098630769230769232940000000000000217076923076923098630769230769232940000000000000 and Mn5 of ∈2⅄(φn5/2⅄Qn6c2)=(1.^6/0.^76470588235294117647058823529411)=^2.09230769230769230769230769230771323076923076923076923076923076944000000000000000000000000000000 or 2.09230769230769230769230769230771323076923076923076923076923076944000000000000000000000000000000209230769230769230769230769230771323076923076923076923076923076944000000000000000000000000000000 and so on for ncn variants of Mn5 of ∈2⅄(φn5cn/2⅄Qn6cn)
Mn6 of ∈2⅄(φn6/2⅄Qn7)=(1.6/0.^894736842105263157)=^1.78823529411764706061176470588235294296470588235294117825882352941176470767058823529411764884705882352941176649411764705882353120000000000000000 or 1.78823529411764706061176470588235294296470588235294117825882352941176470767058823529411764884705882352941176649411764705882353120000000000000000178823529411764706061176470588235294296470588235294117825882352941176470767058823529411764884705882352941176649411764705882353120000000000000000
Mn7 of ∈2⅄(φn7/2⅄Qn8)=(1.625/0.^8260869565217391304347)=^1.96710526315789473684230197368421052631578949335526315789473684210723026315789473684210545986842105263157894738809210526315789473684407236842105263157894756513157894736842105265125000000000000000000 or 1.96710526315789473684230197368421052631578949335526315789473684210723026315789473684210545986842105263157894738809210526315789473684407236842105263157894756513157894736842105265125000000000000000000196710526315789473684230197368421052631578949335526315789473684210723026315789473684210545986842105263157894738809210526315789473684407236842105263157894756513157894736842105265125000000000000000000 and Mn7 of ∈2⅄(φn7/2⅄Qn8c2)=(1.625/0.^82608695652173913043478260869565217391304347)=^1.96710526315789473684210526315789473684210528282894736842105263157894736842105263157894756513157894736842105263157894736842105263158091447368421052631578947368421052631578947370388157894736842105263157894736842105263157914407894736842105263157894736842105263157894933552631578947368421052631578947368421052633546052631578947368421052631578947368421052651250000000000000000000000000000000000000000 or 1.96710526315789473684210526315789473684210528282894736842105263157894736842105263157894756513157894736842105263157894736842105263158091447368421052631578947368421052631578947370388157894736842105263157894736842105263157914407894736842105263157894736842105263157894933552631578947368421052631578947368421052633546052631578947368421052631578947368421052651250000000000000000000000000000000000000000196710526315789473684210526315789473684210528282894736842105263157894736842105263157894756513157894736842105263157894736842105263158091447368421052631578947368421052631578947370388157894736842105263157894736842105263157914407894736842105263157894736842105263157894933552631578947368421052631578947368421052633546052631578947368421052631578947368421052651250000000000000000000000000000000000000000 and so on for ncn variants of Mn7 of ∈2⅄(φn7/2⅄Qn8cn)