1dir.cloud - 1dir.org - 1dir.cc
1 decimal integer ring cycle of many
Quantum Field Fractal Polarization Math Constants
nemeth braille printable arx calc
pronounced why phi prime quotients
ᐱ Y φ Θ P Q Ψ
condensed matter
Y Phi Theta Prime Q Psi Quotient Based Numerals
nu mer numer nu mer i call numerical nomenclature & arc ratio constants
Given J=∈2⅄(2⅄Qn1/1⅄Qn2)cn
∈2⅄2Qn1 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn1/1⅄1Qn2)=(0.^6/1.^6)
depending of cn variable factor and are crossed variants of two different path sets variables
then
Jn1=∈2⅄2Qn1 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn1/1⅄1Qn2)=(0.^6/1.^6)=0.375
Jn2=∈2⅄2Qn2 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn2/1⅄1Qn3)=(0.6/1.4)=0.^428571 or 0.428571428571 and so on...
Jn3=∈2⅄2Qn3 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn3/1⅄1Qn4)=(0.^714285/1.^571428)=0.45454516528915101423673244972089080759665730787538468195806616656951511618731497720544625652591146396780507920184698248981181447702344619034406921602516946369798679926792700651891146 with an extended shell of decimal having a potential of 1,571,427 total digits in the final quotient based on probability.
Jn4=∈2⅄2Qn4 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn4/1⅄1Qn5)=(0.^63/1.^18)=0.5^33898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220 or 0.53389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220 and so on...
Jn5=∈2⅄2Qn5 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn5/1⅄1Qn6)=(0.^846153/1.^307692)=0.6470583287196067575545311893014563062250132294148775093829433842219727581112372026440476809523955182107101672259217002168706392636798267481945289869479969 with an extended shell of decimal having a potential of 1,307,691 total digits in the final quotient based on probability.
Jn6=∈2⅄2Qn6 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn6/1⅄1Qn7)=(0.^7647058823529411/1.^1176470588235294)=0.684210526315789412465373961218835920688146960198272849348915370508135256304372321138265855835498117244903745636822286788460480387603018825899 with an extended shell of decimal having a potential of 11,176,470,588,235,293 total digits in the final quotient based on probability.
Jn7=∈2⅄2Qn7 of ∈2⅄1Qn and ∈1⅄1Qn variables is (2⅄1Qn7/1⅄1Qn8)=(0.^894736842105263157/1.^210526315789473684)=0.73913043478260869504158790170132325131158050464370839153244878341629711157086065798544297592536707095399008276962905581808523178602244449010177944104738165045248338105171854790477971844377713876604864668587428500279106898884770173961583808501699160688971097130730288815473234283605267620082301614540046542623008976441747224804001561120303865183304619325270237423183412056568736943162332531577171642289101309839508111 with an extended shell of decimal having a potential of 1,210,526,315,789,473,683 total digits in the final quotient based on probability.
Variable Factor 2⅄2Qnc1 will differ variants of ∈2⅄1Qn and ∈1⅄1Qn given a factor 1⅄1Qnc2 factor 2⅄1Qnc2 and so on . . .
email@1dir.cc
c.dir.1dir.cc c.dir.1dir.org c.dir.1dir.cloud
c://dir