G=∈2⅄(Θn1/φn2)cn
Gn1=(Θn1/φn2)=(0/1)=0
Gn2=(Θn2/φn3)=(1/2)=0.5
Gn3=(Θn3/φn4)=(0.5/1.5)=0.^3 or 0.3333 and so on...
Gn4=(Θn4/φn5)=(0.^6/1.^6)=0.375 and Gn4=(Θn4c2/φn5)=(0.^66/1.^6)=0.4125 and Gn4=(Θn4/φn5c2)=(0.^6/1.^66)=^0.3614457831325301204819277108433734939759 and
Gn4=(Θn4c2/φn5c2)=(0.^66/1.^66)=0.^39759036144578313253012048192771084337349 or 0.39759036144578313253012048192771084337349 and so on for variants of set ∈Gn4=(Θn4cn/φn5cn)ncn
Gn5=(Θn5/φn6)=(0.6/1.6)=0.375
Gn6=(Θn6/φn7)=(0.625/1.625)=0.^384615 or 0.384615
Gn7=(Θn7/φn8)=(0.^615384/1.^615384)=0.38095214512462671414351014990862853662039490300758209812651357200517028768391911768347340322796313446214646177 with an extended shell of decimal having a potential of 1,615,383 total digits in the final quotient based on probability.
Gn8=(Θn8/φn9)=(0.^619047/1.^619047)=0.3823527050172107418746954226776616120470869591803079218824407197567457893439782785799300452673702 with an extended shell of decimal having a potential of 1,619,046 total digits in the final quotient based on probability.
Gn9=(Θn9/φn10)=(0.6^1764705882352941/1.6^1762941)=0.3818223475694160444325749492895285577182971716618332254480956797144285352724886474461415733 with an extended shell of decimal having a potential of 161,762,940 total digits in the final quotient based on probability.
Gn10=(Θn10/φn11)=(0.6^18/1.6^18)=0.^3819530284301606922126081582200247218788627935723114956736711990111248454882571075401730531520395550061804697156983930778739184177997527812113720642768850432632880098887515451174289245982694684796044499
Gn11=(Θn11/φn12)=(0.^6179775280878651685393258764044943820224719101123595505/1.^61797752808988764044943820224719101123595505)=0.38194444444319444444444446527777777777777777923659336415456211419753094376929012345679012902865 with an extended shell of decimal having a potential of 161,797,752,808,988,764,044,943,820,224,719,101,123,595,504 total digits in the final quotient based on probability.
Gn12=(Θn12/φn13)=(0.6180^5/1.6180^5)=0.^381972126942925125923179135379005593152251166527610395228824819999 or 0.381972126942925125923179135379005593152251166527610395228824819999
Gn13=(Θn13/φn14)=(0.6180257553648064377682403433476394849785407725322060085836909871244635193133047210300429184^54935622317596566/1.^61802575107296137339055793991416738197424034334763948497854077253214592274678111587982832)
Gn14=(Θn14/φn15)=(0.610079575596814323607427055702917771827585941644562334217506631^294429708196286206893896551724137931034482493368673740053050397875331564986472148514588567639257/1.6183^0223896551724135014)
Gn15=(Θn15/φn16)=(0.6^18032786885245901639344262295081967213114754098360655737749/1.618^032786885245901639344262295081967213114754098360655737704918)
Gn16=(Θn16/φn17)=(0.^618034447821681864235055724417426545086119554204660587639311043566362715298885511651469098277608915906788247213779128672745684022289766870/1.618034447821681864235057244174265450860192502532928064842958459979736575481256332320141843^9716312056737588652482269503546099290780141843)
and so on for ∈Gn=2⅄(Θ/φ)ncn