1dir.cloud - 1dir.org - 1dir.cc

1 decimal integer ring cycle of many

Quantum Field Fractal Polarization Math Constants

nemeth braille printable arx calc

pronounced why phi prime quotients

Y φ Θ P Q Ψ

condensed matter

Y Phi Theta Prime Q Quotients Base Numerals 1dir 2dir 3dir cdir

numer nu mer numerical nomenclature & arcs

Ψ represents unique whole numbers that are not prime numbers nor are they fibonacci numbers

4 6 9 10 12 14 15 16 18 20 22 24 25 26 27 28 30 32 33 35 36 38 39 40 42 44 45 46 48 49 50 51 52 54 56 57 58 60 62 63 64 65 66 68 69 70 72 74 75 76 77 78 80 81 82 84 85 86 87 88 90 91 92 93 94 95 96 98 99 100 and so on . . .

These whole numbers are variables that are neither Y base fibonacci numerals nor are they prime numbers and yet these numbers are still factorable numerals of a set entirely different than Y, P, A through Z, φ, and Θ.

In this case we note the set as (N) of Ψ such that psi represents N whole numbers that are not prime nor fibonacci based numerals and are an ordinal set of consecutive values.

N then is a number and N represents any number of any set including numbers that can not be defined to any of these sets.

A  B  D  E  F  G  H  I  J  K  L  M  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇°  ∀

As C cycles of repeating ratios are numerable then cn or CN is a cycle count of N many cycle counts that its self can be whole and partial of...

1⅄Ψn1=(Ψn2n1)=(6/4)=1.5

2⅄Ψn1=(Ψn1n2)=(4/6)=0.^6

And path 3⅄ is applicable to variables of 1⅄Ψn and also applicable to variables of 2⅄Ψn to variable factor potential notated change of CN variants in ratios of 1⅄Ψn and 2⅄Ψ

Chevron ^ Bold numerals represent a repeating decimal number sequence stem that can be counted for cn as practical application ratio values infinitely to the limit of a finite factoring limit.

1⅄Ψn1=(Ψn2n1)=(6/4)=1.5

1⅄Ψn2=(Ψn3n2)=(9/6)=1.5

1⅄Ψn3=(Ψn4n3)=(10/9)=1.^1 or 1.1

1⅄Ψn4=(Ψn5n4)=(12/10)=1.2

1⅄Ψn5=(Ψn6n5)=(14/12)=1.1^6 or 1.16

1⅄Ψn6=(Ψn7n6)=(15/14)=1.0^714285 or 1.0714285

1⅄Ψn7=(Ψn8n7)=(16/15)=1.0^6 or 1.06

1⅄Ψn8=(Ψn9n8)=(18/16)=1.125

1⅄Ψn9=(Ψn10n9)=(20/18)=1.^1 or 1.1

1⅄Ψn10=(Ψn11n10)=(22/20)=1.1

1⅄Ψn11=(Ψn12n11)=(24/22)=1.^09 or 1.09

1⅄Ψn12=(Ψn13n12)=(25/24)=1.041^6 or 1.0416

1⅄Ψn13=(Ψn14n13)=(26/25)=1.04

1⅄Ψn14=(Ψn15n14)=(27/26)=1.0^384615 or 1.0384615

1⅄Ψn15=(Ψn16n15)=(28/27)=1.0^37 or 1.037

1⅄Ψn16=(Ψn17n16)=(30/28)=1.0^714285 or 1.0714285

1⅄Ψn17=(Ψn18n17)=(32/30)=1.0^6 or 1.06

1⅄Ψn18=(Ψn19n18)=(33/32)=1.03125

1⅄Ψn19=(Ψn20n19)=(35/33)=1.0^6 or 1.06

1⅄Ψn20=(Ψn21n20)=(36/35)=1.0^285714 or 1.0285714

1⅄Ψn21=(Ψn22n21)=(38/36)=1.0^5 or 1.05

1⅄Ψn22=(Ψn23n22)=(39/38)=1.0^263157894736842105263157894736842105 or 1.0263157894736842105263157894736842105

1⅄Ψn23=(Ψn24n23)=(40/39)=^1.02564 or 1.02564 or 1.02564102564

1⅄Ψn24=(Ψn25n24)=(42/40)=1.05

1⅄Ψn25=(Ψn26n25)=(44/42)=1.^047619 or 1.047619

1⅄Ψn26=(Ψn27n26)=(45/44)=1.02^27 or 1.0227

1⅄Ψn27=(Ψn28n27)=(46/45)=1.0^2 or 1.02

1⅄Ψn28=(Ψn29n28)=(48/46)=1.^0434782608695652173913 or 1.0434782608695652173913

1⅄Ψn29=(Ψn30n29)=(49/48)=1.0208^3 or 1.02083

1⅄Ψn30=(Ψn31n30)=(50/49)=^1.02040816326530612244897959183673469387755 or ^1.02040816326530612244897959183673469387755102040816326530612244897959183673469387755

1⅄Ψn31=(Ψn32n31)=(51/50)=1.02

1⅄Ψn32=(Ψn33n32)=(52/51)=1.^0196078431372549 or 1.0196078431372549

1⅄Ψn33=(Ψn34n33)=(54/52)=1.0^384615 or 1.0384615

1⅄Ψn34=(Ψn35n34)=(56/54)=1.^037 or 1.037

1⅄Ψn35=(Ψn36n35)=(57/56)=1.017^857142 or 1.017857142

1⅄Ψn36=(Ψn37n36)=(58/57)=1.^017543859649122807 or 1.017543859649122807

1⅄Ψn37=(Ψn38n37)=(60/58)=^1.034482758620689655172413793 or 1.034482758620689655172413793

1⅄Ψn38=(Ψn39n38)=(62/60)=1.0^3 or 1.03 or 1.033 or 1.0333

1⅄Ψn39=(Ψn40n39)=(63/62)=1.0^161290322580645 or 1.0161290322580645

1⅄Ψn40=(Ψn41n40)=(64/63)=1.^015873 or 1.015873

1⅄Ψn41=(Ψn42n41)=(65/64)=1.015625

1⅄Ψn42=(Ψn43n42)=(66/65)=1.0^153846 or 1.0153846

1⅄Ψn43=(Ψn44n43)=(68/66)=1.^03 or 1.03

1⅄Ψn44=(Ψn45n44)=(69/68)=1.01^4705882352941176 or 1.014705882352941176

1⅄Ψn45=(Ψn46n45)=(70/69)=^1.014492753623188405797 or 1.0144927536231884057971014492753623188405797

1⅄Ψn46=(Ψn47n46)=(72/70)=1.0^285714 or 1.0285714

1⅄Ψn47=(Ψn48n47)=(74/72)=1.02^7 or 1.027

1⅄Ψn48=(Ψn49n48)=(75/74)=1.0^135 or 1.0135

1⅄Ψn49=(Ψn50n49)=(76/75)=1.01^3 or 1.013

1⅄Ψn50=(Ψn51n50)=(77/76)=1.01^315789473684210526 or 1.01315789473684210526

1⅄Ψn51=(Ψn52n51)=(78/77)=1.^012987 or 1.012987

1⅄Ψn51=(Ψn53n52)=(80/78)=^1.02564 or 1.02564102564

1⅄Ψn53=(Ψn54n53)=(81/80)=1.0125

1⅄Ψn54=(Ψn55n54)=(82/81)=1.^012345679 or 1.012345679

1⅄Ψn55=(Ψn56n55)=(84/82)=1.^02439 or 1.02439

1⅄Ψn56=(Ψn57n56)=(85/84)=1.01^190476 or 1.01190476

1⅄Ψn57=(Ψn58n57)=(86/85)=1.0^1176470588235294 or 1.0^1176470588235294

1⅄Ψn58=(Ψn59n58)=(87/86)=1.0^116279069767441860465 or 1.0116279069767441860465

1⅄Ψn59=(Ψn60n59)=(88/87)=1.^0114942528735632183908045977 or 1.0114942528735632183908045977

1⅄Ψn60=(Ψn61n60)=(90/88)=1.02^27 or 1.0227

1⅄Ψn61=(Ψn62n61)=(91/90)=1.0^1 or 1.01 or 1.011 or 1.0111

1⅄Ψn62=(Ψn63n62)=(92/91)=1.^010989 or 1.010989

1⅄Ψn63=(Ψn64n63)=(93/92)=1.01^0869565217391304347826 or 1.010869565217391304347826

1⅄Ψn64=(Ψn65n64)=(94/93)=1.^010752688172043 or 1.010752688172043

1⅄Ψn65=(Ψn66n65)=(95/94)=1.0^1063829787234042553191489361702127659574468085 or 1.01063829787234042553191489361702127659574468085

1⅄Ψn66=(Ψn67n66)=(96/95)=1.0^105263157894736842 or 1.0105263157894736842

1⅄Ψn67=(Ψn68n67)=(98/96)=1.0208^3 or 1.02083

1⅄Ψn68=(Ψn69n68)=(99/98)=1.0^102040816326530612244897959183673469387755 or 1.0102040816326530612244897959183673469387755

1⅄Ψn69=(Ψn70n69)=(100/99)=1.^01 or 1.01 or 1.0101 or 1.010101

and so on for variables of 1⅄Ψn


Then 

2⅄Ψn1=(Ψn1n2)=(4/6)=0.^6 or 0.6

2⅄Ψn2=(Ψn2n3)=(6/9)=0.^6 or 0.6

2⅄Ψn3=(Ψn3n4)=(9/10)=0.9

2⅄Ψn4=(Ψn4n5)=(10/12)=0.8^3 or 0.83

2⅄Ψn5=(Ψn5n6)=(12/14)=0.^857142 or 0.857142

2⅄Ψn6=(Ψn6n7)=(14/15)=0.9^3 or 0.93

2⅄Ψn7=(Ψn7n8)=(15/16)=0.9375

2⅄Ψn8=(Ψn8n9)=(16/18)=0.^8 or 0.8

2⅄Ψn9=(Ψn9n10)=(18/20)=0.9

2⅄Ψn10=(Ψn10n11)=(20/22)=0.9^09 or 0.909

2⅄Ψn11=(Ψn11n12)=(22/24)=0.91^6 or 0.916

2⅄Ψn12=(Ψn12n13)=(24/25)=0.96

2⅄Ψn13=(Ψn13n14)=(25/26)=0.9^615384 or 0.9615384

2⅄Ψn14=(Ψn14n15)=(26/27)=0.^962 or 0.962

2⅄Ψn15=(Ψn15n16)=(27/28)=0.96^428571 or 0.96428571

2⅄Ψn16=(Ψn16n17)=(28/30)=0.9^3 or 0.93

2⅄Ψn17=(Ψn17n18)=(30/32)=0.9375

2⅄Ψn18=(Ψn18n19)=(32/33)=0.^96 or 0.96

2⅄Ψn19=(Ψn19n20)=(33/35)=0.9^428571 or 0.9428571

2⅄Ψn20=(Ψn20n21)=(35/36)=0.97^2 or 0.972

and so on for variables of 2⅄Ψn


ᐱ∀Ψ complex for all for any equations of psi specific numerals can then be factored to a library of psi Ψ and many paths the variables can be quantified with.


Then

12Ψn1 of 1⅄Ψn=(1⅄Ψn2/1⅄Ψn1)=(1.5/1.5)=1

12Ψn2 of 1⅄Ψn=(1⅄Ψn3/1⅄Ψn2)=(1.1/1.5)=0.7^3 or 0.73 and 12Ψn2 of 1⅄Ψn=(1⅄Ψn3c2/1⅄Ψn2)=(1.11/1.5)=0.74 and 12Ψn2 of 1⅄Ψn=(1⅄Ψn3c3/1⅄Ψn2)=(1.111/1.5)=0.740^6 or 0.7406 and so on for cn variable of 12Ψn2 of 1⅄Ψn

12Ψn3 of 1⅄Ψn=(1⅄Ψn4/1⅄Ψn3)=(1.2/1.1)=1.^09 or 1.09

12Ψn4 of 1⅄Ψn=(1⅄Ψn5/1⅄Ψn4)=(1.16/1.2)=0.9^6 or 0.96

12Ψn5 of 1⅄Ψn=(1⅄Ψn6/1⅄Ψn5)=(1.0714285/1.16)=0.9236452^58620689655172413793103448275862068965517241379310344827

or

0.923645258620689655172413793103448275862068965517241379310344827

12Ψn6 of 1⅄Ψn=(1⅄Ψn7/1⅄Ψn6)=(1.06/1.0714285)

12Ψn7 of 1⅄Ψn=(1⅄Ψn8/1⅄Ψn7)=(1.125/1.06)

12Ψn8 of 1⅄Ψn=(1⅄Ψn9/1⅄Ψn8)=(1.1/1.125)

12Ψn9 of 1⅄Ψn=(1⅄Ψn10/1⅄Ψn9)=(1.1/1.1)

12Ψn10 of 1⅄Ψn=(1⅄Ψn11/1⅄Ψn10)=(1.09/1.1)

12Ψn11 of 1⅄Ψn=(1⅄Ψn12/1⅄Ψn11)=(1.0416/1.09)

12Ψn12 of 1⅄Ψn=(1⅄Ψn13/1⅄Ψn12)=(1.04/1.0416)

12Ψn13 of 1⅄Ψn=(1⅄Ψn14/1⅄Ψn13)=(1.0384615/1.04)

12Ψn14 of 1⅄Ψn=(1⅄Ψn15/1⅄Ψn14)=(1.037/1.0384615)

12Ψn15 of 1⅄Ψn=(1⅄Ψn16/1⅄Ψn15)=(1.0714285/1.037)

12Ψn16 of 1⅄Ψn=(1⅄Ψn17/1⅄Ψn16)=(1.06/1.0714285)

12Ψn17 of 1⅄Ψn=(1⅄Ψn18/1⅄Ψn17)=(1.03125/1.06)

12Ψn18 of 1⅄Ψn=(1⅄Ψn19/1⅄Ψn18)=(1.06/1.03125)

12Ψn19 of 1⅄Ψn=(1⅄Ψn20/1⅄Ψn19)=(1.0285714/1.06)

and so on for c1 of cn variables factoring for 12Ψn of 1⅄Ψn from Ψ base numerals.


Then

22Ψn1 of 1⅄Ψn=(1⅄Ψn1/1⅄Ψn2)=(1.5/1.5)=1

22Ψn2 of 1⅄Ψn=(1⅄Ψn2/1⅄Ψn3)=(1.5/1.1)=1.^36 or 1.36

22Ψn3 of 1⅄Ψn=(1⅄Ψn3/1⅄Ψn4)=(1.1/1.2)=0.91^6 or 0.916

22Ψn4 of 1⅄Ψn=(1⅄Ψn4/1⅄Ψn5)=(1.2/1.16)=^1.034482758620689655172413793 or 1.0344827586206896551724137931034482758620689655172413793

22Ψn5 of 1⅄Ψn=(1⅄Ψn5/1⅄Ψn6)=(1.16/1.0714285)

22Ψn6 of 1⅄Ψn=(1⅄Ψn6/1⅄Ψn7)=(1.0714285/1.06)

22Ψn7 of 1⅄Ψn=(1⅄Ψn7/1⅄Ψn8)=(1.06/1.125)

22Ψn8 of 1⅄Ψn=(1⅄Ψn8/1⅄Ψn9)=(1.125/1.1)

22Ψn9 of 1⅄Ψn=(1⅄Ψn9/1⅄Ψn10)=(1.1/1.1)

22Ψn10 of 1⅄Ψn=(1⅄Ψn10/1⅄Ψn11)=(1.1/1.09)

22Ψn11 of 1⅄Ψn=(1⅄Ψn11/1⅄Ψn12)=(1.09/1.0416)

22Ψn12 of 1⅄Ψn=(1⅄Ψn12/1⅄Ψn13)=(1.0416/1.04)

22Ψn13 of 1⅄Ψn=(1⅄Ψn13/1⅄Ψn14)=(1.04/1.0384615)

22Ψn14 of 1⅄Ψn=(1⅄Ψn14/1⅄Ψn15)=(1.0384615/1.037)

22Ψn15 of 1⅄Ψn=(1⅄Ψn15/1⅄Ψn16)=(1.037/1.0714285)

22Ψn16 of 1⅄Ψn=(1⅄Ψn16/1⅄Ψn17)=(1.0714285/1.06)

22Ψn17 of 1⅄Ψn=(1⅄Ψn17/1⅄Ψn18)=(1.06/1.03125)

22Ψn18 of 1⅄Ψn=(1⅄Ψn18/1⅄Ψn19)=(1.03125/1.06)

22Ψn19 of 1⅄Ψn=(1⅄Ψn19/1⅄Ψn20)=(1.06/1.0285714)

and so on for c1 of cn variables factoring for 22Ψn of 1⅄Ψn from Ψ base numerals.


Then

12Ψn1 of 2⅄Ψn=(2⅄Ψn2/2⅄Ψn1)=(0.6/0.6)=1

12Ψn2 of 2⅄Ψn=(2⅄Ψn3/2⅄Ψn2)=(0.9/0.6)=1.5

12Ψn3 of 2⅄Ψn=(2⅄Ψn4/2⅄Ψn3)=(0.83/0.9)=0.9^2 or 0.92

12Ψn4 of 2⅄Ψn=(2⅄Ψn5/2⅄Ψn4)=(0.857142/0.83)=1.0327^01204819277108433734939759036144578313253 or 1.032701204819277108433734939759036144578313253

12Ψn5 of 2⅄Ψn=(2⅄Ψn6/2⅄Ψn5)=(0.93/0.857142)=^1.08500 or 1.08500108500

12Ψn6 of 2⅄Ψn=(2⅄Ψn7/2⅄Ψn6)=(0.9375/0.93)=1.00^806451612903225 or 1.00806451612903225

12Ψn7 of 2⅄Ψn=(2⅄Ψn8/2⅄Ψn7)=(0.8/0.9375)

12Ψn8 of 2⅄Ψn=(2⅄Ψn9/2⅄Ψn8)=(0.9/0.8)

12Ψn9 of 2⅄Ψn=(2⅄Ψn10/2⅄Ψn9)=(0.909/0.9)

12Ψn10 of 2⅄Ψn=(2⅄Ψn11/2⅄Ψn10)=(0.916/0.909)

12Ψn11 of 2⅄Ψn=(2⅄Ψn12/2⅄Ψn11)=(0.96/0.916)

12Ψn12 of 2⅄Ψn=(2⅄Ψn13/2⅄Ψn12)=(0.9615384/0.96)

12Ψn13 of 2⅄Ψn=(2⅄Ψn14/2⅄Ψn13)=(0.962/0.9615384)

12Ψn14 of 2⅄Ψn=(2⅄Ψn15/2⅄Ψn14)=(0.96428571/0.962)

12Ψn15 of 2⅄Ψn=(2⅄Ψn16/2⅄Ψn15)=(0.93/0.96428571)

12Ψn16 of 2⅄Ψn=(2⅄Ψn17/2⅄Ψn16)=(0.9375/0.93)

12Ψn17 of 2⅄Ψn=(2⅄Ψn18/2⅄Ψn17)=(0.96/0.9375)

12Ψn18 of 2⅄Ψn=(2⅄Ψn19/2⅄Ψn18)=(0.9428571/0.96)

12Ψn19 of 2⅄Ψn=(2⅄Ψn20/2⅄Ψn19)=(0.972/0.9428571)

and so on for c1 of cn variables factoring for 12Ψn of 2⅄Ψn from Ψ base numerals.


while

22Ψn1 of 2⅄Ψn=(2⅄Ψn1/2⅄Ψn2)=(0.6/0.6)=1

22Ψn2 of 2⅄Ψn=(2⅄Ψn2/2⅄Ψn3)=(0.6/0.9)=0.^6 or 0.6

22Ψn3 of 2⅄Ψn=(2⅄Ψn3/2⅄Ψn4)=(0.9/0.83)=^1.0843373493975903614457831325301204819277 or 1.084337349397590361445783132530120481927710843373493975903614457831325301204819277

22Ψn4 of 2⅄Ψn=(2⅄Ψn4/2⅄Ψn5)=(0.83/0.857142)=^0.96833430166763500 or 0.96833430166763500096833430166763500

22Ψn5 of 2⅄Ψn=(2⅄Ψn5/2⅄Ψn6)=(0.857142/0.93)=0.92165^806451612903225 or 0.92165806451612903225

22Ψn6 of 2⅄Ψn=(2⅄Ψn6/2⅄Ψn7)=(0.93/0.9375)=0.992

22Ψn7 of 2⅄Ψn=(2⅄Ψn7/2⅄Ψn8)=(0.9375/0.8)

22Ψn8 of 2⅄Ψn=(2⅄Ψn8/2⅄Ψn9)=(0.8/0.9)

22Ψn9 of 2⅄Ψn=(2⅄Ψn9/2⅄Ψn10)=(0.9/0.909)

22Ψn10 of 2⅄Ψn=(2⅄Ψn10/2⅄Ψn11)=(0.909/0.916)

22Ψn11 of 2⅄Ψn=(2⅄Ψn11/2⅄Ψn12)=(0.916/0.96)

22Ψn12 of 2⅄Ψn=(2⅄Ψn12/2⅄Ψn13)=(0.96/0.9615384)

22Ψn13 of 2⅄Ψn=(2⅄Ψn13/2⅄Ψn14)=(0.9615384/0.962)

22Ψn14 of 2⅄Ψn=(2⅄Ψn14/2⅄Ψn15)=(0.962/0.96428571)

22Ψn15 of 2⅄Ψn=(2⅄Ψn15/2⅄Ψn16)=(0.96428571/0.93)

22Ψn16 of 2⅄Ψn=(2⅄Ψn16/2⅄Ψn17)=(0.93/0.9375)

22Ψn17 of 2⅄Ψn=(2⅄Ψn17/2⅄Ψn18)=(0.9375/0.96)

22Ψn18 of 2⅄Ψn=(2⅄Ψn18/2⅄Ψn19)=(0.96/0.9428571)

22Ψn19 of 2⅄Ψn=(2⅄Ψn19/2⅄Ψn20)=(0.9428571/0.972)

and so on for c1 of cn variables factoring for 22Ψn of 2⅄Ψn from Ψ base numerals.



So from set Ψ psi base of paths 1⅄ and 2⅄ we have base sets of variables

Ψ

1⅄Ψn

2⅄Ψn

1⅄ of 1⅄Ψn

1⅄ of 2⅄Ψn

2⅄ of 1⅄Ψn

2⅄ of 2⅄Ψn

and

3⅄Ψn applicable as a path of factoring to variables from sets

1⅄Ψn

2⅄Ψn

1⅄ of 1⅄Ψn

1⅄ of 2⅄Ψn

2⅄ of 1⅄Ψn

2⅄ of 2⅄Ψn

and so on for variable factors of cn to set bases 1⅄Ψn and 2⅄Ψn


As these N for number symbols represent numbers then for numbers 0 through 11 are

Y, Y, Y&P, Y&P, Ψ, Y&P, Ψ, P, Y, Ψ, Ψ, P

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Yn1, Yn2, Yn3&Pn1, Yn4&Pn2, Ψn1, Yn5&Pn3, Ψn2, Pn4, Yn6, Ψn3, Ψn4, Pn5

and so on for sets Y, P, Ψ of whole numbers bases definable and variables in quantum field fractal polarization math.


So then as these variables from sets are definable and numerable as consecutive values, then the numbers are as well applicable to other math functions. Path Functions  ncn  ⅄X  1  2  3ncn  +⅄  1-⅄  2-⅄  of set Ψ variables applied with variable sets A  B  D  E  F  G  H  I  J  K  L  M  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  Ψ for complex numerals ᐱ  ᗑ  ∘⧊°  ∘∇° 


1ᐱ(Ψn2/An1), ∈1ᐱ(Ψn2/Bn1), ∈1ᐱ(Ψn2/Dn1), ∈1ᐱ(Ψn2/En1), ∈1ᐱ(Ψn2/Fn1), ∈1ᐱ(Ψn2/Gn1), ∈1ᐱ(Ψn2/Hn1), ∈1ᐱ(Ψn2/In1), ∈1ᐱ(Ψn2/Jn1), ∈1ᐱ(Ψn2/Kn1), ∈1ᐱ(Ψn2/Ln1), ∈1ᐱ(Ψn2/Mn1), ∈1ᐱ(Ψn2/Nn1), ∈1ᐱ(Ψn2/On1), ∈1ᐱ(Ψn2/Pn1), ∈1ᐱ(Ψn2/Qn1), ∈1ᐱ(Ψn2/Rn1), ∈1ᐱ(Ψn2/Sn1), ∈1ᐱ(Ψn2/Tn1),∈1ᐱ(Ψn2/Un1),  ∈1ᐱ(Ψn2/Vn1), ∈1ᐱ(Ψn2/Wn1), ∈1ᐱ(Ψn2/Yn1), ∈1ᐱ(Ψn2/Zn1), ∈1ᐱ(Ψn2n1), 1ᐱ(Ψn2n1), ∈1ᐱ(Ψn2/Ψn1), ∈1ᐱ(Ψn2/ᐱn1), ∈1ᐱ(Ψn2/ᗑn1), ∈1ᐱ(Ψn2/∘⧊°n1), ∈1ᐱ(Ψn2/∘∇°n1)


2ᐱ(Ψn1/An2), ∈2ᐱ(Ψn1/Bn2), ∈2ᐱ(Ψn1/Dn2), ∈2ᐱ(Ψn1/En2), ∈2ᐱ(Ψn1/Fn2), ∈2ᐱ(Ψn1/Gn2), ∈2ᐱ(Ψn1/Hn2), ∈2ᐱ(Ψn1/In2), ∈2ᐱ(Ψn1/Jn2), ∈2ᐱ(Ψn1/Kn2), ∈2ᐱ(Ψn1/Ln2), ∈2ᐱ(Ψn1/Mn2), ∈2ᐱ(Ψn1/Nn2), ∈2ᐱ(Ψn1/On2), ∈2ᐱ(Ψn1/Pn2), ∈2ᐱ(Ψn1/Qn2), ∈2ᐱ(Ψn1/Rn2), ∈2ᐱ(Ψn1/Sn2), ∈2ᐱ(Ψn1/Tn2),∈2ᐱ(Ψn1/Un2),  ∈2ᐱ(Ψn1/Vn2), ∈2ᐱ(Ψn1/Wn2), ∈2ᐱ(Ψn1/Yn2), ∈2ᐱ(Ψn/Zn), ∈nᐱ(Ψnn), nᐱ(Ψnn), ∈nᐱ(Ψncn/Ψncn), ∈nᐱ(Ψncn/ᐱncn), ∈nᐱ(Ψncn/ᗑncn), ∈nᐱ(Ψncn/∘⧊°ncn), ∈nᐱ(Ψncn/∘∇°ncn)


nᐱ(Ψn/An), ∈nᐱ(Ψn/Bn), ∈nᐱ(Ψn/Dn), ∈nᐱ(Ψn/En), ∈nᐱ(Ψn/Fn), ∈nᐱ(Ψn/Gn), ∈nᐱ(Ψn/Hn), ∈nᐱ(Ψn/In), ∈nᐱ(Ψn/Jn), ∈nᐱ(Ψn/Kn), ∈nᐱ(Ψn/Ln), ∈nᐱ(Ψn/Mn), ∈nᐱ(Ψn/Nn), ∈nᐱ(Ψn/On), ∈nᐱ(Ψn/Pn), ∈nᐱ(Ψn/Qn), ∈nᐱ(Ψn/Rn), ∈nᐱ(Ψn/Sn), ∈nᐱ(Ψn/Tn),∈nᐱ(Ψn/Un),  ∈nᐱ(Ψn/Vn), ∈nᐱ(Ψn/Wn), ∈nᐱ(Ψn/Yn), ∈nᐱ(Ψn/Zn), ∈nᐱ(Ψnn), nᐱ(Ψnn), ∈nᐱ(Ψncn/Ψncn), ∈nᐱ(Ψncn/ᐱncn), ∈nᐱ(Ψncn/ᗑncn), ∈nᐱ(Ψncn/∘⧊°ncn), ∈nᐱ(Ψncn/∘∇°ncn)

while path 3ncn is not applicable to whole number variables with no decimal stem repeating numerals of set variables nᐱ(Ψncn/Ψncn),  3ncn is applicable with set variables of  nᐱ(1Ψncn/1Ψncn), and  nᐱ(2Ψncn/2Ψncn) such that 1Ψ and 2Ψ are ratios of consecutive numbers of Ψ base that are not Y base nor are these P prime base numerals and are unique. (N) numbers such as 12Ψ and 22Ψ are ratios of a second tier of ratios quotient derived from ratios divided by ratios defined at cn of each variable.


if ncn=(⅄nncn)(ncn) then Ψncn=(⅄Ψncn)(ncn) is a a multiple exponent variable dependent on the definition of path set variable cn of Ψn if it is not a base set variable of Ψ.


if 1X⅄=(n2xn1) then

n⅄Xᐱ(ΨnxAn), ∈n⅄Xᐱ(ΨnxBn), ∈n⅄Xᐱ(ΨnxDn), ∈n⅄Xᐱ(ΨnxEn), ∈n⅄Xᐱ(ΨnxFn), ∈n⅄Xᐱ(ΨnxGn), ∈n⅄Xᐱ(ΨnxHn), ∈n⅄Xᐱ(ΨnxIn), ∈n⅄Xᐱ(ΨnxJn), ∈n⅄Xᐱ(ΨnxKn), ∈n⅄Xᐱ(ΨnxLn), ∈n⅄Xᐱ(ΨnxMn), ∈n⅄Xᐱ(ΨnxNn), ∈n⅄Xᐱ(ΨnxOn), ∈n⅄Xᐱ(ΨnxPn), ∈n⅄Xᐱ(ΨnxQn), ∈n⅄Xᐱ(ΨnxRn), ∈n⅄Xᐱ(ΨnxSn), ∈n⅄Xᐱ(ΨnxTn),∈n⅄Xᐱ(ΨnxUn),  ∈n⅄Xᐱ(ΨnxVn), ∈n⅄Xᐱ(ΨnxWn), ∈n⅄Xᐱ(ΨnxYn), ∈n⅄Xᐱ(ΨnxZn), ∈n⅄Xᐱ(Ψnn), ∈n⅄Xᐱ(Ψnn), n⅄Xᐱ(ΨncnxΨncn), ∈n⅄Xᐱ(Ψncnxᐱncn), ∈n⅄Xᐱ(Ψncnxᗑncn), ∈n⅄Xᐱ(Ψncnx∘⧊°ncn), ∈n⅄Xᐱ(Ψncnx∘∇°ncn)


if +⅄=(nncn+nncn) then

n+⅄ᐱ(Ψn+An), ∈n+⅄ᐱ(Ψn+Bn), ∈n+⅄ᐱ(Ψn+Dn), ∈n+⅄ᐱ(Ψn+En), ∈n+⅄ᐱ(Ψn+Fn), ∈n+⅄ᐱ(Ψn+Gn), ∈n+⅄ᐱ(Ψn+Hn), ∈n+⅄ᐱ(Ψn+In), ∈n+⅄ᐱ(Ψn+Jn), ∈n+⅄ᐱ(Ψn+Kn), ∈n+⅄ᐱ(Ψn+Ln), ∈n+⅄ᐱ(Ψn+Mn), ∈n+⅄ᐱ(Ψn+Nn), ∈n+⅄ᐱ(Ψn+On), ∈n+⅄ᐱ(Ψn+Pn), ∈n+⅄ᐱ(Ψn+Qn), ∈n+⅄ᐱ(Ψn+Rn), ∈n+⅄ᐱ(Ψn+Sn), ∈n+⅄ᐱ(Ψn+Tn),∈n+⅄ᐱ(Ψn+Un),  ∈n+⅄ᐱ(Ψn+Vn), ∈n+⅄ᐱ(Ψn+Wn), ∈n+⅄ᐱ(Ψn+Yn), ∈n+⅄ᐱ(Ψn+Zn), ∈n+⅄ᐱ(Ψnn), ∈n+⅄ᐱ(Ψnn),  ∈n+⅄ᐱ(Ψn+Ψn), ∈n+⅄ᐱ(Ψncn+ᐱncn), ∈n+⅄ᐱ(Ψncn+ᗑncn), ∈n+⅄ᐱ(Ψncn+∘⧊°ncn), ∈n+⅄ᐱ(Ψncn+∘∇°ncn)


if 1-⅄=(n2-n1) then

1-⅄ᐱ(Ψn2-An1), ∈1-⅄ᐱ(Ψn2-Bn1), ∈1-⅄ᐱ(Ψn2-Dn1), ∈1-⅄ᐱ(Ψn2-En1), ∈1-⅄ᐱ(Ψn2-Fn1), ∈1-⅄ᐱ(Ψn2-Gn1), ∈1-⅄ᐱ(Ψn2-Hn1), ∈1-⅄ᐱ(Ψn2-In1), ∈1-⅄ᐱ(Ψn2-Jn1), ∈1-⅄ᐱ(Ψn2-Kn1), ∈1-⅄ᐱ(Ψn2-Ln1), ∈1-⅄ᐱ(Ψn2-Mn1), ∈1-⅄ᐱ(Ψn2-Nn1), ∈1-⅄ᐱ(Ψn2-On1), ∈1-⅄ᐱ(Ψn2-Pn1), ∈1-⅄ᐱ(Ψn2-Qn1), ∈1-⅄ᐱ(Ψn2-Rn1), ∈1-⅄ᐱ(Ψn2-Sn1), ∈1-⅄ᐱ(Ψn2-Tn1),∈1-⅄ᐱ(Ψn2-Un1),  ∈1-⅄ᐱ(Ψn2-Vn1), ∈1-⅄ᐱ(Ψn2-Wn1), ∈1-⅄ᐱ(Ψn2-Yn1), ∈1-⅄ᐱ(Ψn2-Zn1), ∈1-⅄ᐱ(Ψn2n1), ∈1-⅄ᐱ(Ψn2n1),1-⅄ᐱ(Ψn2-Ψn1), ∈1-ᐱ(Ψn2cn-n1cn), ∈1-ᐱ(Ψn2cn-n1cn), ∈1-ᐱ(Ψn2cn-∘⧊°n1cn), ∈1-ᐱ(Ψn2cn-∘∇°n1cn)


if 2-⅄=(n1-n2) then

2-⅄ᐱ(Ψn1-An2), ∈2-⅄ᐱ(Ψn1-Bn2), ∈2-⅄ᐱ(Ψn1-Dn2), ∈2-⅄ᐱ(Ψn1-En2), ∈2-⅄ᐱ(Ψn1-Fn2), ∈2-⅄ᐱ(Ψn1-Gn2), ∈2-⅄ᐱ(Ψn1-Hn2), ∈2-⅄ᐱ(Ψn1-In2), ∈2-⅄ᐱ(Ψn1-Jn2), ∈2-⅄ᐱ(Ψn1-Kn2), ∈2-⅄ᐱ(Ψn1-Ln2), ∈2-⅄ᐱ(Ψn1-Mn2), ∈2-⅄ᐱ(Ψn1-Nn2), ∈2-⅄ᐱ(Ψn1-On2), ∈2-⅄ᐱ(Ψn1-Pn2), ∈2-⅄ᐱ(Ψn1-Qn2), ∈2-⅄ᐱ(Ψn1-Rn2), ∈2-⅄ᐱ(Ψn1-Sn2), ∈2-⅄ᐱ(Ψn1-Tn2),∈2-⅄ᐱ(Ψn1-Un2),  ∈2-⅄ᐱ(Ψn1-Vn2), ∈2-⅄ᐱ(Ψn1-Wn2), ∈2-⅄ᐱ(Ψn1-Yn2), ∈2-⅄ᐱ(Ψn1-Zn2), ∈2-⅄ᐱ(Ψn1-φn2), ∈2-⅄ᐱ(Ψn1-Θn2),2-⅄ᐱ(Ψn1-Ψn2), ∈2-ᐱ(Ψn1cn-n2cn), ∈2-ᐱ(Ψn1cn-n2cn), ∈2-ᐱ(Ψn1cn-∘⧊°n2cn), ∈2-ᐱ(Ψn1cn-∘∇°n2cn)


and if 3-⅄=(nncn-nncn) then the cn factor difference is critical to the precision value of that path function subtraction difference for any 3-⅄=(Ψncn-⅄Ψncn) variables just as the cn variable factor is crucial for path set division function 3=(Ψncn/⅄Ψncn) when pertaining to variables of path psi 1Ψ and 2Ψ rather than base Ψ variable whole numbers. The cn factor is important for accurate addition function equations where a cn factor is applicable as well with addition path psi 1Ψncn and 2Ψncn


n⅄∀n(NncnxnΨncn), n⅄∀n(Nncn/nΨncn), n⅄∀n(Nncn+nΨncn), and n⅄∀n(Nncn-nΨncn) functions for all or for any variables of sequential variables in sets of psi non prime non fibonacci variable quotient functions of complex values nncn(nΨncn)(n) determined on cn definition in the ratios.


if you need a 1dir 2dir to 3dir

email@1dir.cc

c.dir.1dir.cc  c.dir.1dir.org  c.dir.1dir.cloud

c://dir