1. w. H. Derksen, General presentation of algebras, Adv. Math. 278 (2015), 210--237.
2. Moduli of representations I. Projection from quivers, arXiv:1011.6106.
3. Counting using Hall algebras I. Quivers, J. Algebra 372 (2012), 542--559.
4. Counting using Hall algebras II. Extensions from quivers, Alg. Rep. Theory 18 (2015), no. 4, 1135--1153.
5. Counting using Hall algebras III. Quivers with potentials, Pacific J. Math. 300 (2019), no. 2, 347--373.
6. Constructing coherently G-invariant modules, J. Algebra 446 (2016), 154--175.
7. On some quiver determinantal variety, J. Algebra 424 (2015), 1--20.
8. Cluster algebras and semi-invariant rings I. Triple Flags, Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 1--32.
9. Cluster algebras and semi-invariant rings II. Projections, Math. Z. 285 (2017), no. 3-4, 939--966.
10. Cluster algebras, invariant theory, and Kronecker coefficients I, Adv. Math. 310 (2017), 1064--1112.
11. Cluster algebras, invariant theory, and Kronecker coefficients II, Adv. Math. 341 (2019), 536--582.
12. Tensor product multiplicities via upper cluster algebras, Ann. Sci. Éc. Norm. Supér. 54, no. 6 (2021).
13. w. J. Weyman, Extending upper cluster algebras, arXiv:1707.04661.
14. Combinatorics of F-polynomials, Int. Math. Res. Not. IMRN 2023, no. 9, 7578--7615.
15. Tropical F-polynomials and general presentations, J. Lond. Math. Soc. (2) 107 (2023), no. 6, 2079--2120.
16. Mahler measure of 3D Landau-Ginzburg potentials, Forum Math. 33 (2021), no. 5, 1369–-1401.
17. On the general ranks of QP representations, Algebr. Represent. Theory 28 (2025), no. 1, 47–79.
18. Crystal structure of upper cluster algebras, arXiv:2309.08326.
19. Schur Rank, compatibility degree, and the canonical decomposition, arXiv:2503.12700.
20. On the poly-regular bases of upper cluster algebras, to appear.