We would like to thank Dr. Lingyan Shi for sponsoring our senior design project and for allowing us to work in her lab. We would like to thank Dr. Hongje Jang for his guidance in developing our classification model and for teaching us the fundamentals and principles of Raman spectroscopy. We would like to thank Zhi Li for teaching us how to operate the spontaneous Raman microscope and for providing us with the biological samples we used to generate data. Lastly, we would like to thank Dr. Bruce Wheeler and Noah Mehringer for their general guidance and feedback over the course of the senior design process.
References
William J. Irvin, Lisa A. Carey, What is triple-negative breast cancer?, European Journal of Cancer, Volume 44, Issue 18, 2008, Pages 2799-2805, ISSN 0959-8049, https://doi.org/10.1016/j.ejca.2008.09.034.
P. Boyle, Triple-negative breast cancer: epidemiological considerations and recommendations, Annals of Oncology, Volume 23, Supplement 6, 2012, Pages vi7-vi12, ISSN 0923-7534, https://doi.org/10.1093/annonc/mds187.
Prakash O, Hossain F, Danos D, Lassak A, Scribner R and Miele L (2020) Racial Disparities in Triple Negative Breast Cancer: A Review of the Role of Biologic and Non-biologic Factors. Front. Public Health 8:576964. doi: 10.3389/fpubh.2020.576964
Tayyari F., Gowda G., Olopade O. F., Berg R., Yang H. H., Lee M. P., Ngwa W. F., Mittal S. K., Raftery D., Mohammed S. I. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences. Oncotarget. 2018; 9: 11677-11690. Retrieved from https://www.oncotarget.com/article/24433/text/
Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ, Dasi S, Day A, Blackman KW, Frederick W, Copeland RL, Gabrielson E, Dewitty RL (2014) Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics 11: 279–294
Martinez, L., Thames, E., Kim, J. et al. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer 16, 559 (2016). https://doi.org/10.1186/s12885-016-2547-z
R. J. DeBerardinis, N. S. Chandel, Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).
Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med. 2020 Feb 15;17(1):44-59. doi: 10.20892/j.issn.2095-3941.2019.0210. PMID: 32296576; PMCID: PMC7142847.
Dadhich, R., Kapoor, S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem (2022). https://doi.org/10.1007/s11010-022-04459-4
Yue Gong, Peng Ji, Yun-Song Yang, Shao Xie, Tian-Jian Yu, Yi Xiao, Ming-Liang Jin, Ding Ma, Lin-Wei Guo, Yu-Chen Pei, Wen-Jun Chai, Da-Qiang Li, Fan Bai, François Bertucci, Xin Hu, Yi-Zhou Jiang, Zhi-Ming Shao, Metabolic-Pathway-Based Subtyping of Triple-Negative Breast Cancer Reveals Potential Therapeutic Targets, Cell Metabolism, Volume 33, Issue 1, 2021, Pages 51-64.e9, ISSN 1550-4131, https://doi.org/10.1016/j.cmet.2020.10.012.
Yin, L., Duan, JJ., Bian, XW. et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22, 61 (2020). https://doi.org/10.1186/s13058-020-01296-5
Cao, M.D., Lamichhane, S., Lundgren, S. et al. Metabolic characterization of triple negative breast cancer. BMC Cancer 14, 941 (2014). https://doi.org/10.1186/1471-2407-14-941
Ruiz-Rodado, V., Lita, A. & Larion, M. Advances in measuring cancer cell metabolism with subcellular resolution. Nat Methods 19, 1048–1063 (2022). https://doi.org/10.1038/s41592-022-01572-6
Shi, L., Wei, M., Miao, Y. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat Biotechnol 40, 364–373 (2022). https://doi.org/10.1038/s41587-021-01041-z
Wang X, Liu Nm, Zhao Yf, Yang F, Zhu Zj, Song D. Research Progress in the Medical Application of Heavy Water, Especially in the Field of D2O-Raman Spectroscopy. Int J Med Sci 2022; 19(8):1357-1363. doi:10.7150/ijms.73150. Available from https://www.medsci.org/v19p1357.htm
Shi, L., Zheng, C., Shen, Y., Chen, Z., Silveira, E. S., Zhang, L., Wei, M., Liu, C., de Sena-Tomas, C., Targoff, K., & Min, W. (2018). Optical imaging of metabolic dynamics in animals. Nature communications, 9(1), 2995. https://doi.org/10.1038/s41467-018-05401-3
Shi, L., Fung, A. A., & Zhou, A. (2021). Advances in stimulated Raman scattering imaging for tissues and animals. Quantitative imaging in medicine and surgery, 11(3), 1078–1101. https://doi.org/10.21037/qims-20-712
Feng, F., Mao, H., Wang, A., & Chen, L. (2021). Two-Photon Fluorescence Imaging. Advances in experimental medicine and biology, 3233, 45–61. https://doi.org/10.1007/978-981-15-7627-0_3
Bendau, E, Smith, J, Zhang, L, et al. Distinguishing metastatic triple-negative breast cancer from nonmetastatic breast cancer using second harmonic generation imaging and resonance Raman spectroscopy. J. Biophotonics. 2020; 13:e202000005. https://doi.org/10.1002/jbio.202000005
Mah, E.J., Lefebvre, A.E.Y.T., McGahey, G.E. et al. Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility. Sci Rep 8, 17094 (2018). https://doi.org/10.1038/s41598-018-35381-9
Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012 Mar 8;7(4):654-69. doi: 10.1038/nprot.2012.009. PMID: 22402635; PMCID: PMC4337962.
Chowdary, M.V.P., Kalyan Kumar, K., Mathew, S., Rao, L., Krishna, C.M. and Kurien, J. (2009), Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: A spectral deconvolution study. Biopolymers, 91: 539-546. https://doi.org/10.1002/bip.21171
Alba-Arbalat, S., Andorra, M., Sanchez-Dalmau, B., Camos-Carreras, A., Dotti-Boada, M., Pulido-Valdeolivas, I., Llufriu, S., Blanco, Y., Sepulveda, M., Saiz, A., Batet, O., Bilbao, I., Torre, I., Amat-Roldan, I., Martinez-Lapiscina, E. H., & Villoslada, P. (2021). In Vivo Molecular Changes in the Retina of Patients With Multiple Sclerosis. Investigative ophthalmology & visual science, 62(6), 11. https://doi.org/10.1167/iovs.62.6.11
Gole, L., Yeong, J., Lim, J., Ong, K. H., Han, H., Thike, A. A., Poh, Y. C., Yee, S., Iqbal, J., Hong, W., Lee, B., Yu, W., & Tan, P. H. (2020). Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast cancer research : BCR, 22(1), 42. https://doi.org/10.1186/s13058-020-01282-x
Luo, R.; Popp, J.; Bocklitz, T. Deep Learning for Raman Spectroscopy: A Review. Analytica 2022, 3, 287-301. https://doi.org/10.3390/analytica3030020
Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat Protoc 16, 5426–5459 (2021). https://doi.org/10.1038/s41596-021-00620-3
Bryce Manifold, Elena Thomas, Andrew T. Francis, Andrew H. Hill, and Dan Fu, "Denoising of stimulated Raman scattering microscopy images via deep learning," Biomed. Opt. Express 10, 3860-3874 (2019)
Danying Ma, Linwei Shang, Jinlan Tang, Yilin Bao, Juanjuan Fu, Jianhua Yin, Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 256, 2021, 119732, ISSN 1386-1425, https://doi.org/10.1016/j.saa.2021.119732
Ortega-Martorell, S., Riley, P., Olier, I. et al. Breast cancer patient characterisation and visualisation using deep learning and fisher information networks. Sci Rep 12, 14004 (2022). https://doi.org/10.1038/s41598-022-17894-6
Chang He, Shuo Zhu, Xiaorong Wu, Jiale Zhou, Yonghui Chen, Xiaohua Qian, and Jian Ye, Accurate Tumor Subtype Detection with Raman Spectroscopy via Variational Autoencoder and Machine Learning, ACS Omega 2022 7 (12), 10458-10468, DOI: 10.1021/acsomega.1c07263
Min, Wei, Lixue Shi, Hanqing Xiong, Lu Wei. Stimulated raman coupled fluorescence spectroscopy and microscopy system and method (US Patent No. 20210404958A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20210404958A1/en
Berto, Pascal, Andresen Esben, and Hervé Rigneault. Device and method for stimulated Raman detection (US Patent No. 9494522B2). U.S. Patent and Trademark Office. https://patents.google.com/patent/US9494522B2/en
Ntziouni A, Thomson J, Xiarchos I, et al. Review of Existing Standards, Guides, and Practices for Raman Spectroscopy. Applied Spectroscopy. 2022;76(7):747-772. doi:10.1177/00037028221090988
Kiranyaz, Serkan et al. “1D Convolutional Neural Networks and Applications: A Survey.” ArXiv abs/1905.03554 (2019): n. pag.