Nuevos Dispositivos Neuromorficos Basados en Espintrónica y Oxitrónica Ref: PID2024-155385NB-C31 - "Proyectos de Generación de Conocimiento 2024" - Complutense University of Madrid, Spain (09/2025 - 08/2028) - Funding agency: Science and Innovation Ministry, Spain (MICINN)
Quantitative Determination of the Rashba Effect in Two Dimensional Electron Systems based in KTaO3. Ref: CNS2022-135485 - "Consolidacion Investigadora 2022" - Complutense University of Madrid, Spain (09/2023 - 08/2025) - Funding agency: Science and Innovation Ministry, Spain (MICINN)
Two Dimensional Electron Gases for Spin to Charge Conversion - "Proyecto I+D Generación de Conocimiento" - Complutense University of Madrid, Spain (2020 - 2022) - Funding agency: Science and Innovation Ministry, Spain (MICINN)
Oxide Electronics - "Atraccion de Talento - Modaliad 1- Senior ". Complutense University of Madrid, Spain (2019 - 2023) - Funding agency: Comunidad de Madrid (Spain).
Artificial heterostructures of strongly correlated oxides investigated by ARPES - "Ambizione - SNSF Project". University of Geneva, Switzerland. (2015 - 2018) - Funding agency : Swiss National Science Foundation (Switzerland).
46. “Electronic transport properties and stability of 2D electron gases on Si3N4/AlOx//KTaO3 heterostructures" Journal of Applied Physics, 138, 165301 (2025). (OA)
45. “Fermi surface and pseudogap in highly doped Sr2IrO4 ” npj Quantum Materials 10, 100 (2025) . (OA)
44. “KTaO3(001) Preparation Methods in Vacuum: Effects on Surface Stoichiometry, Crystallography, and in-gap States ”. Journal of Vacuum Science & Technology B 43, 044001 (2025). arXiv:2504.01590 (submitted version)
43. “Synthesis and in-depth interfacial characterization of 2D electron gases formed in Si3N4/Al//KTaO3 heterostructures ” Applied Surface Science 689, 162499 (2025) (OA) . arXiv (submitted version)
42. “Anisotropic Electronic Structure of the 2D Electron Gas at the AlOx/KTaO3(110) Interface” Advanced Electronic Materials 202300267 (2023). (OA)
41. “BinPo: An open-source code to compute the band structure of two-dimensional electron systems” Computer Physics Communications, 284, 108595 (2023). (OA)
40. "Electronic structure of the highly conductive perovskite oxide SrMoO3" Physical Review Materials 6, 075002 (2022). (OA)
39. "A Laser-ARPES View of the 2D Electron Systems at LaAlO3/SrTiO3 and Al/SrTiO3 Interfaces" Advanced Electronic Materials 210376 (2022). (OA)
38. “A laser-ARPES study of LaNiO3 thin films grown by sputter deposition” APL Materials 8, 051102 (2020). (OA)
37. “Bulk and Surface Electronic Structure of the Dual-Topology Semimetal Pt2HgSe3” Physical Review Letters 124, 106402 (2020). arXiv
36. “Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas” Nature Materials 18, 1187 (2019). (open access - submitted version)
35. “High-Resolution Photoemission on Sr2RuO4 Reveals Correlation-Enhanced Effective Spin-Orbit Coupling and Dominantly Local Self-Energies” Physical Review X 9, 021048 (2019). (OA)
34. “Band Structure and Spin–Orbital Texture of the (111)-KTaO3 2D Electron Gas” Advanced Electronic Materials 1800860 (2019). arXiv
33. “Microfocus Laser–Angle-Resolved Photoemission on Encapsulated Mono-, Bi-, and Few-Layer 1T′-WTe2” Nano Letters 19, 554 (2019). arXiv
32. “In situ strain tuning of the metal-insulator-transition of Ca2RuO4 in angle-resolved photoemission experiments” Nature Communications 9, 4535 (2018). (OA)
31. “Observation of Out-of-Plane Spin Texture in a SrTiO3 – 111 Two-Dimensional Electron Gas” Physical Review Letters 120, 266802 (2018). arXiv
30. “Atomically Precise Lateral Modulation of a Two-Dimensional Electron Liquid in Anatase TiO2 Thin Films” Nano Letters 17, 2561 (2017). arXiv
29. “Electronic structure of buried LaNiO3 layers in (111)-oriented LaNiO3/LaMnO3 superlattices probed by soft x-ray ARPES” APL Materials 5, 016101 (2017). (OA)
28. “Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe2” Physical Review X 6, 031021 (2016). (OA)
27. “Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2” Physical Review B 94, 121112(R) (2016). ArXiv
26. “Tailoring the nature and strength of electron–phonon interactions in the SrTiO3(001) 2D electron liquid” Nature Materials 15, 835 (2016). ArXiv
25. “Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO3 (001)” Physical Review B 93, 245143 (2016). Arxiv
24. “Millionfold Resistance Change in Ferroelectric Tunnel Junctions Based on Nickelate Electrodes” Advanced Electronic Materials 1500245 (2016).
23. “Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy” Chemistry of Materials 28, 4042 (2016). ArXiv
22. “Collapse of the Mott Gap and Emergence of a Nodal Liquid in Lightly Doped Sr2IrO4” Physical Review Letters 115, 176402 (2015). Arxiv
21. “Carrier‐Density Control of the SrTiO3 (001) Surface 2D Electron Gas studied by ARPES” Advanced Materials 27, 3894 (2015).
20. “Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping” Nature Communications 6, 6306 (2015).
19. “Structural, magnetic, and electronic properties of GdTiO3 Mott insulator thin films grown by pulsed laser deposition” Applied Physics Letters 105, 172402 (2014). ArXiv
18. “Signatures of a Two-Dimensional Ferromagnetic Electron Gas at the La0.7Sr0.3MnO3/SrTiO3 Interface Arising From Orbital Reconstruction” Advanced Materials 26, 7516 (2014).
17. “Probing the metal-insulator transition in nickelates using soft x-ray absorption spectroscopy” Applied Physics Letters 104, 021920 (2014).
16. “Control of a Two-Dimensional Electron Gas on SrTiO3 (111) by Atomic Oxygen” Physical Review Letters 113, 177601 (2014). Arxiv
15. “Atomic structure and microstructures of supertetragonal multiferroic BiFeO3 thin films” Physical Review B 89, 104106 (2014).
14. “Rationalizing strain engineering effects in rare-earth nickelates” Physical Review B 88, 195108 (2013).
13. “Characterization of surface metallic states in SrTiO3 by means of aberration corrected electron microscopy” Ultramicroscopy 127 109 (2013).
12. “Electron Doping by Charge Transfer at LaFeO3/Sm2CuO4 Epitaxial Interfaces” Advanced Materials 25 1468 (2013).
11. “Tailoring Interface Structure in Highly Strained YSZ/STO Heterostructures“ Advanced Materials 23, 5268 (2013).
10. “Anisotropic magnetotransport in SrTiO3 surface electron gases generated by Ar+ irradiation” Physical Review B 83, 245120, (2011).
9. “Upper Limit to Magnetism in LaAlO3/SrTiO3 Heterostructures” Physical Review Letters 107, 217201 (2011).
8. “Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures using EELS” European Physical Journal - Applied Physics 54, 345 (2011).
7. “Electronic and Magnetic Reconstructions in La0.7Sr0.3MnO3/SrTiO3 Heterostructures: A Case of Enhanced Interlayer Coupling Controlled by the Interface” Physical Review Letters 106, 147205 (2011).
6. “Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces.” Nature Communications 1, 82 (2010).
5. “Charge Leakage” at LaMnO3/SrTiO3 interfaces” Advanced Materials 22, 627 (2010).
4. “Effects of interface states on the transport properties of all-oxide La0.8Sr0.2CoO3/SrTi0.99Nb0.01O3 p-n heterojunctions” Applied Physics Letters 92, 082106 (2008).
3. “Thickness Dependent Magnetic Anisotropy of Ultrathin LCMO Epitaxial Thin Films” IEEE Transactions on Magnetics 44, 2926,(2008).
2. “Magnetoresistance in La0.7Ca0.3MnO3–YBa2Cu3O7 F/S/F trilayers” Journal of Magnetism and Magnetic Materials 316, 745 (2007).
1. “Spin dependent transport at oxide La0,7Ca0,3MnO3/ YBa2Cu3O7 ferromagnet / superconductor interfaces” Journal of the European Ceramic Society 27, 3967 (2007).
1. “ARPES Studies of Two-Dimensional Electron Gases at Transition Metal Oxide Surfaces” ISBN:9783319749891 - DOI: 10.1007/978-3-319-74989-1. Book chapter on "Spectroscopy of Complex Oxide Interfaces", Springer. Editores: C. Cancellieri and V.N. Strocov. (2018). ArXiv