Sebuah sepeda memiliki 3 komponen gerak utama yang berbentuk bundar yaitu roda, gir depan dan gir belakang. Ketiga komponen gerak tersebut saling berhubungan membentuk sistem dan dinamakan hubungan roda- roda. Lalu bagaimanakah cara kerja sepeda tersebut?
Gambar 1. Roda-Roda Sepeda
Sepeda akan bergerak maju jika kita mendapat dorongan pada pedal ke arah depan. Dorongan pada pedal sepeda tersebut memutar gir depan. Gir depan dihubungkan dengan gir belakang menggunakan rantai menyebabkan sepeda dapat bergerak. Jika kalian amati lagi gambar di atas, antara gir depan dan gir belakang dihubungkan menggunakan rantai. Sementara itu, gir belakang dan roda belakang mempunyai satu pusat.
Dengan demikian, pada sistem gerak sepeda terdapat dua hubungan yang berbeda. Hubungan pertama adalah antara gir belakang dengan roda yang berada pada satu pusat dan dinamakan hubungan roda-roda sepusat (seporos). Sedangkan hubungan yang kedua adalah antara gir belakang dengan gir depan yang dihubungkan dengan tali (rantai), hubungan ini dinamakan hubungan roda-rada yang dihubungkan dengan sabuk atau rantai.
Selain dua hubungan roda tersebut, terdapat satu hubungan lagi, yaitu hubungan roda- roda yang bersinggungan. Lalu bagaimanakah persamaan matematis dari hubungan roda-roda tersebut? Setiap jenis hubungan memiliki rumus yang berbeda-beda oleh karena itu, untuk memahami persamaan gerak pada hubungan roda-roda dalam gerak melingkar, silahkan kalian simak penjelasan berikut ini.
Roda-Roda Seporos/Sepusat
Gambar 2. Roda-Roda Seporos
Gambar di atas adalah contoh ilustrasi hubungan roda-roda satu poros atau satu pusat seperti hubungan roda pada gir belakang dengan roda belakang sepeda. Jadi anggap saja dua lingkaran di atas adalah gir dan roda sepeda. Pada saat sepeda bergerak maju, roda belakang berputar searah jarum jam. Demikian pula dengan gir belakang.
Setelah selang waktu tertentu, gir belakang dan roda menempuh posisi sudut yang sama. Ini berarti, kecepatan sudut gir belakang dan roda belakang adalah sama atau dapat dituliskan
Karena π = v R, maka pada roda- roda yang sepusat berlaku rumus atau persamaan sebagai berikut:
Keterangan :
π : kecepatan sudut (rad/s)
v : kecepatan linier (m/s)
R : jari-jari (m)
Contoh Soal
Dua buah roda A dan B yang berada pada satu poros memiliki jari-jari 2 cm dan 8 cm, seperti yang terlihat pada gambar dibawah ini. Jika kecepatan linear roda A adalah 6 m/s, tentukan:
a. kecepatan sudut roda A
b. kecepatan linear dan kecepatan sudut roda B
Penyelesaian :
Roda-Roda Bersinggungan
Gambar 3. Roda-Roda Bersinggungan
Hubungan roda-roda yang bersinggungan dapat kalian jumpai pada mesin jam analog, dimana mesin jam tersebut menggunakan roda-roda bergerigi yang saling bersinggungan satu sama lain. Gambar di atas adalah contoh ilustrasi dua roda yang bersinggungan. Jika roda yang lebih besar berputar searah jarum jam, maka roda yang lebih kecil akan berputar berlawanan arah jarum jam sehingga dapat dikatakan arah kecepatan sudut pada dua roda yang bersinggungan adalah berlawanan. Akan tetapi, pada titik persinggungan, besar kecepatan linear kedua roda adalah sama. Sedangkan kecepatan angulernya akan berbeda, bergantung pada jari-jari masing-masing roda atau jumlah gir yang dimilikinya. Jadi pada dua roda yang saling bersinggungan berlaku persamaan berikut:
Keterangan :
π : kecepatan sudut (rad/s)
v : kecepatan linier (m/s)
R : jari-jari (m)
Contoh Soal
Dua buah silinder bersinggungan satu sama lain seperti pada gambar di bawah ini. Diketahui jari-jari dari masing-masing silinder sebesar RA = 50 cm dan RB = 30 cm. Kemudian silinnder B dihubungkan pada mesin penggerak sehingga dapat berputar dengan kecepatan sudut tetap 5 rad/s. Jika kedua silinder dapat berputar tanpa slip, tentukan kecepatan linear silinder A dan B serta kecepatan sudut silinder A!
Penyelesaian :
Roda-Roda Terhubung Tali/Rantai
Gambar 4. Roda-Roda Terhubung Rantai/Tali
Gambar di atas adalah contoh ilustrasi hubungan roda-roda yang dihubungkan dengan sabuk atau rantai seperti hubungan roda pada gir belakang dengan gir depan sepeda ontel. Ketika sepeda bergerak maju, gir depan dan gir belakang akan berputar searah jarum jam. Sehingga dapat dikatakan arah kecepatan sudut kedua gir adalah sama.
Dari pengertian kecepatan linear, kalian tahu bahwa arah kecepatan linear selalu menyinggung lingkaran. Rantai atau tali yang digunakan untuk menghubungkan gir belakang dan gir depan, dipasang pada sebelah luar setiap gir. Pada saat bergerak, kecepatan rantai atau tali menyinggung bagian luar gir. Sehingga dapat disimpulkan bahwa arah dan besar kecepatan linear (tangensial) pada dua roda yang dihubungkan dengan tali atau rantai adalah sama. Sehingga berlaku persamaan sebagai berikut:
Keterangan :
π : kecepatan sudut (rad/s)
v : kecepatan linier (m/s)
R : jari-jari (m)
Contoh Soal
Dua buah roda dihubungkan dengan rantai. Roda yang lebih kecil dengan jari-jari 8 cm diputar pada 100 rad/s. Jika jari-jari roda yang lebih besar adalah 15 cm, berapakah kecepatan linear kedua roda tersebut? Dan berapa juga kecepatan sudut roda yang lebih besar?
Penyelesaian :