Research

"Think different, make wonder!!" : seeking for the art of hydrology

The followings introduce representative research themes of our group. In addition, studies on snow-melting processes and riverine ecosystems are launched recently and they are going to grow to be a major scientific themes in our group. We encourage future students to bring your new field for expanding our research capacity. Students from other disciplines are welcome for this reason. 

Data-based modeling of dominant rainfall-runoff mechanisms: can we develop a runoff model only with observed precipitation and discharge data?

Data-based modeling approach of runoff processes have not been suceeded yet, although thousands of runoff models (regardless of spatially distributed or lumped model structure) have been suggested and tested by today. This scientific inability made it impossible to develp a runoff model based only on observed precipitation and discharge data. After Kirchner (2009, WRR), the situation have changed and many hydrologists started to develop and runoff model based only on observed data. With the successes, they have also succeeded to obtain the ability to explain fundamental hydrological processes such as precipitation as the input to the system, storage as the state varibables of the system, and evapotranspiration and discharge as the output from the system. These advances seem insignificant for some people, we recognize that hydrologists have obtained ability to (1) simply explain hydrological process with minimum assumptions and (2) predict dominant hydrological processes of a watershed. Currently, we attempt to modify the methodology of Kirchner (2009, WRR) so that we can apply it in Asian watesheds over a mosaic of different geological setting under humid climate. 


For more details, please refer the following articles:

Estimating watershed-scale rainwater storage: what watershed characteristics increase subsurface water recharge in mountainous areas?

Even in humid watersheds, mountainous recharge is crucial for fresh water resource planning and managements. From a viewpoint of national security for resources, it is necessary to grasp where the vital recharge forests are in the nation. Then how can we point such vital recharge forests? What is the characteristics of mountainous recharge areas in water-rich watersheds? This research attempts to specify such characteristics based on hydrological and physio-graphic data analysis. Our pilot study revealed typical physio-graphic watershed characteristics that enhance subsurface water recharge in mountainous areas.


For more details, please refer the following articles:

Estimating flow duration curve of a watershed: why are the shapes of flow duration curves unique to a watershed? 

A flow duration curve (FDC) is a cumulative distribution curve of time series data of daily stream flow. By sorting the daily flow in the order of it's magnitude, normally with an annual time series data, we can draw a FDC. As such, a FDC exhibits a characteristic curve for an individual watershed. Climate, soil, geology, topography, vegetation, human activity, and all the other factors would affect the shape of a FDC. Here we face a question such as what the relative roles of climate, soil, geology, topography, vegetation, and human activities for a single FDC of a watershed? Or how does they change with such watershed characteristics? For answering to these questions, we attempt data-based approach and model-based approach.


For more details, please refer the following articles:

Relationship between water balance and physio-graphic characteristics of a watershed: can we theoretically explore the effects of physio-graphic characteristics on watershed water balance?

We can learn watershed response to precipitation and roles of climatic and geographic characteristics of a watershed by means of  analyses of observational data. This is a traditional approach for understanding the functions of watersheds with different climatic and geographic characteristics. This research theme took opposite approach to understand the functions of watersheds. Starting from assumptions of watershed responses and governing equations, we perform sensitivity analysis on the controls of climatic and geographic characteristics on watershed responses on a numerical watersheds. Taking this approach would enrich our understandings on hydrological responses of watersheds as an alternative of the traditional data based approach and would accelerate the advances of hydrological science.


For more details, please refer the following articles: