Publications and Preprints
Publications and Preprints
G. Li, A. Pavelescu, and E. Pavelescu. Intrinsically knotted graphs and connected domination, submitted, arxiv:2407.09476
H. Broadus and E. Pavelescu. The total chord length of maximal outerplanar graphs, submitted, arXiv:2404.11028
F. Bryant and E. Pavelescu. Connected domination in plane triangulations, to appear, Involve-a journal of Mathematics, arXiv:2403.00595
T. W. Mattman, R. Naimi, A. Pavelescu, E. Pavelescu. Intrinsically knotted graphs with linklessly embeddable simple minors, to appear in Algebraic & Geometric Topology, arXiv:2111.08859
R. Naimi, R. Odeneal, A. Pavelescu, E. Pavelescu. The complement problem for linklessly embeddable graphs, to appear in J. Knot Theory Ramifications, arXiv:2108.12946
A. Pavelescu, E. Pavelescu. Constructions stemming from non-separating planar graphs and their Colin de V`erdiere invariant, to appear in Algebraic & Geometric Topology, arXiv:2101.05740
R. Naimi, A. Pavelescu, E. Pavelescu. New bounds on maximal linkless graphs, to appear in Algebraic & Geometric Topology, arXiv:2007.10522
A. Pavelescu, E. Pavelescu. An infinite family of linklessly embeddable Tutte-4-connected graphs, Graphs and Combinatorics 38 (2022), arXiv:2106.08018
A. Pavelescu, E. Pavelescu. Hadwiger numbers of self-complementary graphs, Graphs and Combinatorics 36 (2020), 865–876, arXiv:1802.03000
A. Pavelescu, E. Pavelescu. The complement of a nIL graph with thirteen vertices is IL, Algebraic & Geometric Topology 20 (2020), 395–402, arXiv:1810.11113
E. Pavelescu. Linear embeddings of spatial graphs, Encyclopedia of Knot Theory, Chapman and Hall/CRC, 2020
R. Naimi, A. Pavelescu, E. Pavelescu. Escher squares and lattice links, Topol. Appl. 256, (2019), 69-72, arXiv:1804.04724
P. Luckett, E. Pavelescu, J. McDonald, L. Hively, J. Ochoa. Predicting state transitions in brain dynamics through spectral distance of phase-space graphs, J. Comput. Neurosci (2018), https://doi.org/10.1007/s10827-018-0700-1
P. Luckett, E. Pavelescu, J. McDonald, L. Hively, J. Ochoa. Hypergraphs in phase-space: a new method of predicting epileptic seizures, Proc. IEEE SoutheastCon 2018, Tampa, Florida, April 2018
D. O’Donnol, E. Pavelescu. The total Thurston-Bennequin number of complete and complete bipartite Legendrian graphs, Advances in the Mathematical Sciences, Association for Women in Mathematics Series 6, Springer 2016, 117–13, arXiv:1507.07065
R. Naimi, E. Pavelescu. On the number of links in a linearly embedded K3,3,1, J. Knot Theory Ramifications 24, no. 8 (2015), 1550041, arXiv:1207.0572
R. Naimi, E. Pavelescu, H. Schwartz. Deleting an edge of a 3-cycle in an intrinsically knotted graph gives an intrinsically linked graph, J. Knot Theory Ramifications, Vol. 23, no 14 (2014), arXiv:1407.0297
D. O’Donnol, E. Pavelescu. Legendrian θ−graphs, Pacific J. Math., 270 (2014), no. 1, 191–210 R. Naimi, E. Pavelescu. Linear embeddings of K9 are triple linked, J. Knot Theory Ramifications 23 (2014), no. 3, arXiv:1303.2128
D. O’Donnol, E. Pavelescu. On Legendrian graphs, Alg. Geom. Top. 12 (2012), no. 3, 1273–1299, arXiv:1108.2281
E. Pavelescu. Braiding knots in contact 3-manifolds, Pacific J. Math. 253 (2011), no. 2, 475– 487, arXiv:0902.3715
K. Kawamuro, E. Pavelescu. The self-linking number in annulus and pants open book decompositions, Algebraic & Geometric Topology 11 (2011), no. 1, 553–585, arXiv:0901.0414