Stata Command: rdqte

Stata Command: rdqte.ado

Estimation and robust inference for quantile treatment effects (QTE) in the regression discontinuity designs (RDD) based on Chiang, Hsu, and Sasaki (2019). Use it when you consider a sharp or fuzzy regression discontinuity design and you are interested in analyzing heterogeneous treatment effects. The method is robust against large bandwidths and arbitrary functional forms.

Installation:    

    . ssc install rdqte 

Example: 

    . regress outcome covariate

    . predict resid, residuals

    . rdqte resid running_var 

Help:    

    . help rdqte 

Reference:  Chiang, H.D., Y.-C. Hsu, and Y. Sasaki (2019) Robust Uniform Inference for Quantile Treatment Effects in Regression Discontinuity Designs. Journal of Econometrics, 211 (2), pp. 589-618. Paper.

Title
    rdqte -- Executes estimation and robust inference for quantile treatment        effects (QTE) in regression discontinuity designs (RDD).
Syntax
    rdqte y x [if] [in] [, c(real) fuzzy(varname) cover(real) ql(real)                 qh(real) qn(real) bw(real)]
Description
    rdqte executes estimation and robust inference for quantile treatment        effects (QTE) in the sharp and fuzzy regression discontinuity designs        (RDD) based on Chiang, Hsu, and Sasaki (2019). The command takes an        outcome variable y and a running variable or forcing variable x.  In        case of a fuzzy design, a binary treatment variable d is specified in        the option fuzzy(varname) - see below for details of the usage.  The        primary results consist of estimates and a uniform 95% confidence        band of QTEs across multiple quantiles. In addition to these primary        results, the command also conducts tests of: 1. the null hypothesis        that the QTEs are zero for all the quantiles (i.e., uniformly null        treatment effects); and 2. the null hypothesis that the QTEs are        constant across all the quantiles (i.e., homogeneous treatment        effects) against the alternative of heterogeneous treatment effects.        The method is robust against large bandwidths and unknown functional        forms.
Options
    c(real) sets the discontinuity location for the RDD. The default value is        c(0). (Note: the discontinuity location itself is included as a part        of the observations with negative x.)
    fuzzy(varname) sets the treatment variable used for estimation in a fuzzy        design. Not calling this option tells the command to assume a sharp        design by default.
    cover(real) sets the nominal probability that the uniform confidence band        covers the true QTE. The default value is cover(.95).
    ql(real) sets the lowest quantile at which the QTE is estimated. The        default value is ql(.25).
    qh(real) sets the highest quantile at which the QTE is estimated. The        default value is qh(.75).
    qn(real) sets the number of quantile points at which the QTE is        estimated. The default value is qn(3).
    bw(real) sets the bandwidth with which to estimate the QTE. A        non-positive argument, as is the case with the default value bw(-1),        will translate into an optimal rate.
Examples
    1. y outcome variable, d treatment variable, x running variable
    Estimation and inference under a sharp design:
    . rdqte y x
    Estimation and inference under a fuzzy design:
    . rdqte y x, fuzzy(d)
    Estimation of the QTE at 10th, 20th, ..., and 90th percentiles:
    . rdqte y x, fuzzy(d) ql(0.1) qh(0.9) qn(9)
    (The default is the inter-quartile range: 25th, 50th & 75th percentiles.)
    2. score scores on the Woodcock-Johnson sub-tests, treat an indicator for        participation in the pre-K program in the previous year, bdate birth        date - example drawn from Chiang, Hsu, and Sasaki (2019, Sec. 6).        Students with bdate >= 0 (location-normalized) are eligible for a        participation in the pre-K program.  Participation in the program is        not sharp, and we therefore use a fuzzy RDD.  Quantile treatment        effects of the program on scores on the Woodcock-Johnson sub-tests        are estimated with 90% uniform confidence bands by:
    . rdqte score bdate, fuzzy(treat) cover(0.9) ql(0.1) qh(0.9) qn(9)
Stored results
    rdqte stores the following in r():
    Scalars        r(N)           observations        r(c)           cutoff location        r(h)           bandwidth
    Macros        r(cmd)         rdqte
    matrices        r(q)           quantiles        r(b)           QTE estimates        r(V)           variance matrix        r(CBlower)     lower bounds of confidence band        r(CBupper)     upper bounds of confidence band
Reference
    Chiang, H.D., Y.-C. Hsu, and Y. Sasaki. 2019. Robust Uniform Inference for        Quantile Treatment Effects in Regression Discontinuity Designs.        Journal of Econometrics, 211 (2), pp. 589-618.  Link to Paper.
Authors
    Harold. D. Chiang, Vanderbilt University, Nashville, TN.    Yu-Chin Hsu, Academia Sinica, Taipei, Taiwan.    Yuya Sasaki, Vanderbilt University, Nashville, TN.