Search this site
Embedded Files
Yuya Sasaki - Professor of Economics - Vanderbilt University
  • HOME
    • CV
    • RESEARCH
    • STATA
      • Stata Command: cdecompose
      • Stata Command: crhdreg
      • Stata Command: dkdensity
      • Stata Command: exquantile
      • Stata Command: itvalpctile
      • Stata Command: kotlarski
      • Stata Command: npeivreg
      • Stata Command: npss
      • Stata Command: qrkd
      • Stata Command: rdqte
      • Stata Command: reporterror
      • Stata Command: rkqte
      • Stata Command: robustate
      • Stata Command: robustpf
      • Stata Command: testex
      • Stata Command: testout
      • Stata Command: xtusreg
      • Stata Command: xtregtwo
      • Stata Command: ecic
      • Stata Command: oga
    • STUDENTS
    • TEACHING
    • 日本語
Yuya Sasaki - Professor of Economics - Vanderbilt University
  • HOME
    • CV
    • RESEARCH
    • STATA
      • Stata Command: cdecompose
      • Stata Command: crhdreg
      • Stata Command: dkdensity
      • Stata Command: exquantile
      • Stata Command: itvalpctile
      • Stata Command: kotlarski
      • Stata Command: npeivreg
      • Stata Command: npss
      • Stata Command: qrkd
      • Stata Command: rdqte
      • Stata Command: reporterror
      • Stata Command: rkqte
      • Stata Command: robustate
      • Stata Command: robustpf
      • Stata Command: testex
      • Stata Command: testout
      • Stata Command: xtusreg
      • Stata Command: xtregtwo
      • Stata Command: ecic
      • Stata Command: oga
    • STUDENTS
    • TEACHING
    • 日本語
  • More
    • HOME
      • CV
      • RESEARCH
      • STATA
        • Stata Command: cdecompose
        • Stata Command: crhdreg
        • Stata Command: dkdensity
        • Stata Command: exquantile
        • Stata Command: itvalpctile
        • Stata Command: kotlarski
        • Stata Command: npeivreg
        • Stata Command: npss
        • Stata Command: qrkd
        • Stata Command: rdqte
        • Stata Command: reporterror
        • Stata Command: rkqte
        • Stata Command: robustate
        • Stata Command: robustpf
        • Stata Command: testex
        • Stata Command: testout
        • Stata Command: xtusreg
        • Stata Command: xtregtwo
        • Stata Command: ecic
        • Stata Command: oga
      • STUDENTS
      • TEACHING
      • 日本語

< Back to STATA Main Page

Stata Command: oga

Stata Command: oga.ado

This command executes estimation and inference for high-dimensional regressions without imposing the sparsity restriction. 

Installation:    

    . ssc install oga

Help:    

    . help oga

Reference:  Cha, Jooyoung, Harold D. Chiang, and Yuya Sasaki. "Inference in High-Dimensional Regression Models without the Exact or Lp Sparsity." Review of Economics and Statistics, Forthcoming. Paper.

Title
    oga -- Executes estimation and inference for high-dimensional regressions        without imposing the sparsity restriction.
Syntax
    oga depvar indepvarlist1 indepvarlist2 [if] [in] [, dimension(integer)                 folds(integer) repdml(integer) cstar(real) cluster(varname) ]
Description
    oga performs estimation and inference for high-dimensional regression        models without imposing a sparsity assumption, based on the        methodology of Cha, Chiang, and Sasaki.  The estimation procedure        combines the orthogonal greedy algorithm (OGA), the high-dimensional        Akaike information criterion (HDAIC), and double/debiased machine        learning (DML).
Options
    dimension(integer) specifies the number of variables for indepvarlist1        whose coefficients are to be displayed in the output table.  The        default is dimension(1).  The value must be a positive integer no        greater than the total number of variables in indepvarlist1 and        indepvarlist2.
    folds(integer) sets the number K of folds used for cross-fitting in the        double/debiased machine learning (DML) procedure.  The default is        folds(5).  The value must be an integer greater than 1.
    repdml(integer) sets the number of resampling repetitions used for        finite-sample adjustment in the double/debiased machine learning (DML)        procedure.  The default is repdml(5).  The value must be a positive        integer.
    cstar(real) specifies the tuning parameter C* for the high-dimensional        Akaike information criterion (HDAIC).  The default is cstar(2).
    cluster(varname) specifies the variable used to define clusters.  If this        option is not specified, the command is executed without clustering.
Usage Examples
    Estimation of the partial effect of d on y controlling for 100 variables:
    . oga y d x1 ... x100
    Cluster-robust standard error by the clustering variable state:
    . oga y d x1 ... x100, cluster1(state)
    Estimation of the partial effects of d1, d2, d3 on y controlling for 100        variables:
    . oga y d1 d2 d3 x1 ... x100, dimension(3)
    etc.
Stored results
    oga stores the following in e():
    Scalars        e(N)           observations        e(dimension)   number of indepvarlist1        e(folds)       number of folds for the cross fitting        e(repdml)      number of resampling for DML        e(cstar)       tuning parameter C*
    Macros        e(cluster)     clustering variable        e(cmd)         oga
    Matrices        e(b)           coefficient vector        e(V)           variance-covariance matrix of the estimators
    Functions        e(sample)      marks estimation sample
Reference
    Cha, Jooyoung, Harold D. Chiang, and Yuya Sasaki. Inference in        High-Dimensional Regression Models without the Exact or Lp Sparsity.        Review of Economics and Statistics. Link to Paper.
Authors
    Jooyoung Cha, Vanderbilt University, Nashville, TN.    Harold D. Chiang, University of Wisconsin, Madison, WI.    Yuya Sasaki, Vanderbilt University, Nashville, TN.
Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse