To address these issues, we combine classical molecular, cell biology, genetics, and biochemistry assays with cutting-edge transcriptomic, epigenomic, proteomic, and structural biology approaches, using both the fission yeast Schizosaccharomyces pombe and human cancer cell lines, as experimental systems.
In the presence of nutrients, particularly of a good nitrogen source, S. pombe cells grow and proliferate. In contrast, in starvation conditions, they exit the cell cycle and differentiate into a quiescent state. In this yeast, we decipher the mechanisms by which nutrient-sensing kinases control transcription and chromatin regulators. In parallel, we explore the roles of dedicated chaperones in the coordinated assembly of these factors into active multimeric complexes.
In parallel, we investigate whether similar processes contribute to control the balance between proliferation and quiescence of cancer cells. Indeed, given the high conservation of these factors, what we learn in yeast is likely to be relevant to other, ‘slower-growing’ eukaryotes. This issue is important because some cancer cells could exit quiescence, resume proliferation and cause tumor relapse. Forcing these cells to stay dormant could be an effective way of stopping tumor recurrence following conventional therapies.