Here is the Magma code used in the paper:
"Fields of moduli and fields of definition of odd signature curves",
by Michela Artebani and Saúl Quispe.
Copy the following code and past it in a Magma session
//To find the tangency points $b_{j,1}, b_{j,2}$ on $X$:
K<rho>:=CyclotomicField(12);
i:=rho^3;
R<x>:=PolynomialRing(K);
p:=(x^2-1)^2-4*(x-(1+i))*(x+1/(1-i))*(x-2*(i-1))*(x-1/(2*(1+i)));
L<a>:=ext<K|p>;
S<x>:=PolynomialRing(L);
p1:=Factorization(S!p)[2][1];
T<b>:=ext<L|S!p1>;
M<x>:=PolynomialRing(T);
p2:=Factorization(M!p1)[2][1];
U<c>:=ext<T|p2>;
N<x>:=PolynomialRing(U);
Factorization(N!p);
A<u,v>:=AffineSpace(U,2);
Q:=Scheme(A,u^4+u^2*(v^2-1)+(v-(1+i))*(v+1/(1-i))*(v-2*(i-1))*(v-1/(2*(i+1))));
I:=Q meet Scheme(A,v-a);
PrimeComponents(I);
//and to prove that $\gamma$ is not an automorphism of $X$:
W<bi>:=ext<U|x^2 + 1/2*a^2 - 1/2>;
P<g,h,l,t>:=PolynomialRing(W,4);
F:=FieldOfFractions(P);
R<x,y,z>:=PolynomialRing(F,3);
A:=Matrix(R,3,3,[a*g,a*g,h,bi*g,-bi*g,0,g,g,l]);
D:=Matrix(F,3,3,[rho^4,0,0,0,rho^8,0,0,0,1]);
M:=A*D*A^(-1)*Determinant(A);
E:=Eltseq(M*Matrix(R,3,1,[x,y,z]));
m:=hom<R->R|E>;
Q:=y^4+y^2*(x^2-z^2)+(x-(1+i)*z)*(x+1/(1-i)*z)*(x-2*(i-1)*z)*(x-1/(2*(i+1))*z);
C:=Coefficients(m(Q)-t^(12)*Q);
H:=[P!C[n]:n in [1..15]];
G:=Proj(P);
S:=Scheme(G,H);
Z:=Scheme(G,P!t^(12));
Difference(S,Z);