Box 5.1 Modeling continuous outcomes: the normal distribution
Box 5.2 Modeling integer (count) outcomes: the Poisson distribution
Box 5.3 Modeling “success/ failure” outcomes: the Binomial distribution
Box 5.4 . Summarizing and manipulating data using R
· R code and data file
Box 5.5. Building a linear model in R
· R code and data file
Box 5.6 Generalized linear models and multiple predictor models in R
· R code
· First data example, second data example
Box. 5.7. Evaluating and comparing multiple models
· R code
· Datafile
Box. 5.8. Linear hierarchical modeling and partitioning of variance components
R code
Data
Box 5.9. Bayesian example: binomial likelihood with a beta prior
Box 5.10. Modeling a random effect using WinBUGS: Binomial success with random variation
· R script
· OpenBUGS model
· Data
Box 5.11. Hierarchical model with random effects in WinBUGS
· R script
· OpenBUGS model
· Data
Box 5.12. Jackknife and bootstrap estimation of variance and bias
Box 5.13. Parametric bootstrap estimation of confidence intervals