Networks
Didier Donsez, LIG, Université Grenoble Alpes (UGA)
Fog Computing
Guillaume Pierre, IRISA, Université de Rennes 1
Security
Jan Tobias Muehlberg, Université Libre de Bruxelles
Artificial Intelligence
Lydia Y. Chen, Université de Neuchâtel
Privacy / Fairness
Heber Hwang Arcolezi, CITI, Inria
System
Baptiste Lepers, LIG, Inria
Information Knowledge
Kavé Kave Salamatian, LISTIC, Université Savoie Mont-Blanc
04:00pm Bus leaves Grenoble train station towards Le Pleynet
07:00pm Welcome reception + drink
07:30–08:45am Breakfast
Session 1 - Networks
Session chair: Sébastien Monnet
09:00–10:00am Keynote: Didier Donsez
Low Power Global Area Networks in the context of the Thingsat project
Abstract: TBA
Bio: Didier Donsez is a full professor in the ERODS research group at the Université Grenoble Alpes (UGA). He received his Ph.D in Computer Sciences from the University of Paris VI: Pierre et Marie Curie (1994) and his HDR in Computer Sciences from Université Joseph Fourier (2006). Previously, he has been assistant professor in Computer Sciences at University of Valenciennes, France (1996-2001), then at Université Joseph Fourier (2001-2007). His research interests are in the broad areas of Internet of Things (IoT) and related network (e.g. LoRa).
10:00–10:30am: Break
10:30–12:15am: Student presentations
Abele Mălan: Efficient Generation of Synthetic Multi-attributed Graphs
Adam Lakhdari: Programmable wireless radio for long-life communications
Julien Caposiena: Conception et développement d'un système d'exploitation open source dédié aux routeurs : vers une architecture convergente système et réseaux
Tassany Onofre De Oliveira: Fluid modeling for the design and performance study of distributed systems for swarms of cyber-physical systems
Nathan Leblond: Understanding energy measurement variations
Govind Kp: Right-sizing Message Brokers for Cost Efficiency
Kellian Leveque: TBA
12:20–04:30pm: Lunch & free time
04:30–05:00pm: Coffee break
Session 2 - Fog Computing
Session chair: Rémy Raes
05:00–06:00pm Keynote: Guillaume Pierre
Fog Computing Challenges in Natural Environment Observatories
Abstract: Natural environment observatories allow a wide range of scientists such as biologists, botanists and hydrologists, to observe a zone of particular interest from the points of view of their different scientific disciplines. They follow a data-driven approach based on a variety of sensors and/or actuators deployed in the natural environment, coupled with different techniques to report the produced data to a public or private cloud for further analysis. The constraints which stem from the specificities of such observatories however deviate from traditional IoT use-cases deployed in urban environments. Observatories are often created in remote locations, where energy supply, cellular networking coverage and human maintenance are more challenging than usual. Based on a survey of current practice in 34 observatories in France and abroad, I will make a case for the introduction of fog technologies in these systems, and outline a research agenda to adapt existing fog computing platforms to their specific requirements.
Bio: Guillaume Pierre is a Professor in Computer Science at the University of Rennes. Prior to this he spent 13 years at the VU University Amsterdam. His main interests are Fog computing, Cloud computing, and all other forms of large-scale distributed systems. He took part in several European and EIT Digital projects and acted as the lead designer of the ConPaaS platform-as-a-Service environment and the coordinator of the FogGuru H2020 Maria-Sklodowska project. He is the leader of the Magellan research team at INRIA/IRISA.
06:00pm - 07:15pm: student presentations
Cherif Latreche: FoRLess: A Deep Reinforcement Learning-based approach for FaaS Placement in Fog
Ezra Fielding: Distributed Computing for Satellite Swarms
Matteo Chancerel: Optimization of a fully distributed fog powered by renewable energy sources
Nour Osta: Micro-datacentre sur mesure avec orchestration autonome par apprentissage automatique des besoins applicatifs pour une faible empreinte carbone et énergétique sur le long-terme
Songxuan Liu: Machine Learning Based Lightweight Network Intrusion Detection System for Edge Devices
07:30pm Dinner
09:30pm AMA session "Life beyond the PhD thesis"
07:30–08:45am Breakfast
Session 3 - Security
Session chair: Stéphane Delbruel
09:00–10:00am Keynote: Jan Tobias Muehlberg
Architectural Security for Critical Distributed Systems
Abstract: Distributed computing systems are found across the entire range of, e.g., critical infrastructures, telecommunications , and control systems. Distributed computing has ubiquitously penetrated our lives. However, securing these systems is incredibly difficult as we are dealing with heterogeneous hardware, a wide variety of software stacks, and almost infinite possibilities of interactions. Considerations for security and privacy, the development of threat models and mitigation strategies, must all be an integral part of the design and development process of any such system. A powerful class of security mechanisms are Trusted Execution Environments (TEEs), which involve processor extensions and software designs that provide the means to implement confidential computing in distributed systems. In theory this enables the processing of secret information on public infrastructure, e.g., across public data centres, and allows for notions of end-to-end security between embedded systems in the IoT or in critical control systems, and in the cloud. In practice, however, there are challenges to effectively use TEEs and to properly understand the resulting security guarantees.
In this lecture, I will give a general introduction to security extensions of modern processors. I will discuss how working with these processors is to be integrated in the software engineering life-cycle, and how distributed systems benefit from security related hardware support to implement security and privacy objectives. I will highlight challenging aspects regarding heterogeneity, the security of and on public infrastructures, and availability guarantees, with a bit of an emphasis on TEEs.
Bio: Jan Tobias Muehlberg works as a professor at Université libre de Bruxelles, École polytechnique (BE). He researches topics involving privacy, safety and security of information and communication systems, with particular interest in dependable embedded systems and secure critical ICT infrastructures, and in interdisciplinary research on questions around the responsible and sustainable development and use of ICTs. Jan Tobias is specifically interested in societal aspects of security and privacy in dependable systems, in trusted execution environments, and in security architectures for safety-critical embedded systems. Before joining ULB, Jan Tobias worked as a research manager at KU Leuven (BE), as a postdoc researcher at the University of Bamberg (DE), obtained a Ph.D. from the University of York (UK), and worked as a researcher at the University of Applied Sciences in Brandenburg (DE), where he also acquired his Master’s degree in Computer Science.
10:00–10:30am: Break
10:30–12:15am: Student presentations
Iliana Fayolle: Exploring Vulnerabilities in Client Hello Implementations of Tranport Layer Security Protocol
Chaoyi Zhu: TabWak: A Watermark for Tabular Diffusion Models
Emma Bothereau: Radio Frequency Fingerprint Identification
Martin Molli: Decision models on the Edge-Cloud Computing Continuum for Urgent Computing
Henrique De Medeiros: Energy efficiency through architectural tactics for self-adaptive Cloud systems
Lylian Siffre: LoFi4Green: Local-First Software for a Greener IT
Roberto Gheda: Collaborative and Confidential Junction Trees for Hybrid Bayesian Networks
12:20–04:30pm: Lunch (Pincerie mountain restaurant) & free time
04:30–05:00pm: Coffee break
Session 4 - Artificial Intelligence
Session chair : Antoine Boutet
05:00–06:00pm Keynote: Lydia Y. Chen
Trustworthy AI Systems
Abstract: Generative artificial intelligence (GAI) models, such as language models and diffusion models, are widely used for generating texts, images, tables, and graphs. There are increasing risks of abusing GAI to produce incorrect and adversarial contents. Watermarking GAI content is one of the essential solutions to govern the GAI applications and guardrail their misuse and harm to the society, even requested by the governmental policies. In this talk, I will discuss our ongoing work on post watermarking the content of different modalities from language models and diffusion models, i.e., synthetic text, tables, and graphs. We aim to design watermarking schemes to achieve objectives of having minimal degradation of the generated content quality, imperceptible to humans for avoiding alteration, detectable by machines for rigorous auditing, and robust against post editing attacks. I will highlight the key requirements and technical challenges with respect to the GAI models and the data modalities, through our preliminary results.
Bio: Lydia Y. Chen is a Professor in the Department of Computer Science at the University of Neuchatel in Switzerland and Delft University of Technology in the Netherlands. Prior to joining TU Delft, she was a research staff member at the IBM Research Zurich Lab from 2007 to 2018. She holds a PhD from Pennsylvania State University and a BA from National Taiwan University. Her research interests are federated machine learning, generative AI, and their robustness and privacy management. She has published papers in peer-reviewed journals and serves on the technical program committees of system and AI conferences and the editorial boards on multiple IEEE Transactions journals.
06:00pm - 07:30pm: student presentations
Bart Cox: Asynchronous Federated Learning
Andrew Mary Huet de Barochez: Towards sustainable and resilient AI: frugal and energy-aware distributed machine learning platforms
Émile Royer: Automating machine learning on distributed data streams
Mohamed Amine Legheraba: Efficient and Resilient Decentralized Learning
Houssem Jmal: TUNE-FL: adapTive semi-synchronoUs semi-deceNtralizEd Federated Learning
Alexandre Pham: A brief look at my thesis
07:35pm Dinner
07:30–08:45am Breakfast
Session 5 - Privacy / Fairness
Session chair : Clémentine Gritti
09:00–10:00pm Keynote: Heber Hwang Arcolezi
Intersections of Fairness and Privacy: A Local Differential Privacy Perspective
Abstract: This keynote explores the interplay between Differential Privacy (DP) and fairness in machine learning, with a particular focus on distributed systems through the lens of Local DP (LDP). On the one hand, DP provides a mathematical framework to protect individual data by introducing calibrated noise, ensuring privacy in centralized and distributed settings. On the other hand, fairness addresses biases/discrimination in machine learning models, ensuring equitable outcomes across sensitive demographic groups. In distributed systems, LDP offers a decentralized approach to privacy by perturbing data locally at the user level before aggregation, eliminating the need for a trusted curator. While this distributed paradigm enhances privacy guarantees, it presents unique challenges and opportunities for fairness and data utility. This talk examines how LDP can be leveraged to mitigate biases while maintaining utility, highlighting strategies for optimizing the trade-offs between privacy, fairness, and utility in distributed machine learning systems.
Bio: Héber H. Arcolezi is a full-time researcher at Inria Grenoble in France. He completed his Ph.D. in Computer Science at the University Bourgogne Franche-Comté in 2022, followed by a postdoctoral research position at Inria Saclay & École Polytechnique. His current research interests are on differential privacy and the ethical aspects of machine learning, including fairness and privacy issues.
10:00–10:30am: Break
10:30–12:15am: Student presentations
Arseme Djeufack Nanfack: Optimizing Privacy While Limiting Information Loss in Distributed Data Anonymization
Fouad Abiad: Federated Diffusion Time Series Generation for Semiconductor Data
Aditya Shankar: SiloFuse: Cross-Silo Synthetic Data Generation with Latent Tabular Diffusion Models
Naguib Antonios: Adaptation of component based hierarchical systems: Application to modular robots
Matthieu Silard: Local Peak Shaving for Electric Vehicles: A ready-to-deploy Smart Charging Solution
Maxime Just: A new data paradigm : intelligent and autonomous data
Maryam Babaei: Privacy-preserving and plausible counterfactuals
12:30–04:30pm: Lunch & free time
04:30–05:00pm: Coffee break
Session 6 - System
Session chair: Romain Rouvoy
05:00–06:00pm Keynote: Baptiste Lepers
Concurrence relâchée, mais concurrence prouvée
Abstract: Cette présentation portera sur plusieurs contributions dans le domaine des systèmes d’exploitation, avec un accent particulier sur la détection de bugs dans des environnements concurrents et l’optimisation des performances sur des infrastructures modernes.
Dans un premier volet, nous verrons une nouvelle approche pour inférer les interactions concurrentes dans des programmes multithreadés sans verrou. Ce travail repose sur l’appariement des barrières mémoire, permettant de détecter des fonctions potentiellement concurrentes dans des contextes dépourvus de verrous explicites. En appliquant cette méthode au noyau Linux, nous avons découvert 12 bugs critiques qui menaçaient la stabilité et l’intégrité des données, et dont les correctifs ont été intégrés depuis la version 5.15.
Dans un second volet, nous explorerons les limites des bases de données Key-Value (KV) sur les systèmes de stockage NVMe SSD modernes. Nous avons conçu KVell, un nouveau KV exploitant pleinement les capacités de ces disques, éliminant les limitations dues au CPU qui affectent les KVs existants. KVell, basé sur une architecture sans partage, permet des performances de lecture et d’écriture significativement plus rapides, surpassant l’état de l’art avec des gains de 2× en lecture et 5× en écriture.
Bio: Baptiste Lepers est titulaire d'une chaire de professeur junior à l'Inria (tenure track vers un poste de Directeur de Recherche). Son travail se concentre sur la preuve et l'amélioration des performances des systèmes concurrents. Il travaille à détecter des bugs dans Linux, à optimiser les performances du stockage, de la mémoire, des moteurs de graphes, des ordonnanceurs et des systèmes distribués.
06:00pm - 07:30pm: student presentations
Ivane Adam: Saving the state of applications in remote persistent memory
Jules Risse: Fine grain energy consumption
Marc Tranzer: Understanding the energy footprint of erasure coding in Ceph
Mohammad Rizk: Implementing and Evaluating Erasure Coding in IPFS
Gaëlle Fret: Software factors in smartphone obsolescence
Jérémy Woirhaye: Reducing Storage Overhead: Evaluating Compression Techniques for Android APKs
08:00pm: Social dinner ("raclette au feu de bois")
07:30–08:30am Breakfast
Session 7 - Information Knowledge
Session chair: Sophie Cerf
09:00–10:00am Keynote: Kavé Salamatian
Graph geometrisation: How to monitor dynamic large scale graphs
Abstract: La surveillance de grands réseaux dynamiques est un défi majeur pour un large éventail d'applications. La complexité provient du fait que de légères modifications locales peuvent entraîner des variations importantee des propriétés globales ; par exemple, dans certaines conditions, une simple coupure de lien peut entraîner la partition du graphe. En outre, il est souvent difficile de déterminer si un changement se propagera globalement ou restera local. Les mesures traditionnelles de la théorie des graphes, telles que la centralité ou l'assortativité du graphe, ne sont pas satisfaisantes pour caractériser les propriétés globales du graphe. Dans présentation, nous abordons le problème de la surveillance en temps réel des graphes dynamiques à grande échelle en développant une approche géométrique qui s'appuie sur les notions de courbure géométrique et sur les récents développements en géométrisation des graphes. Nous illustrons l’application de ces méthodes à la surveillance des variations dynamiques de l'Internet mondial à l'aide d'informations sur les changements de topologie fournies par la combinaison de plusieurs flux BGP. En particulier, cette méthode permet détecter les événements et les changements majeurs par le biais de la géométrie de l'intégration du graphe.
Bio: Kavé Salamatian est professeur d'informatique à l'Université de Savoie. Ses principaux domaines de recherche sont la mesure et la modélisation de l'Internet, la sécurité des réseaux et la théorie de l'information sur les réseaux. Il était auparavant lecteur à l'université de Lancaster (Royaume-Uni) et professeur associé à l'université Pierre et Marie Curie. Kavé a obtenu son diplôme en 1998 à l'université Paris SUD-Orsay où il a travaillé sur le codage de canal à source commune appliqué à la transmission multimédia sur l'internet pour son doctorat. Dans une vie antérieure, il a obtenu un MBA, a travaillé sur le marché en tant qu'analyste de risque et a apprécié d'être un modélisateur de trafic urbain pendant quelques années. Il a été professeur invité à l'Académie chinoise des sciences. Il est titulaire d'un prix présidentiel de l'Académie chinoise des sciences pour 2018. Ces jours-ci, il s'efforce de déterminer si la mise en réseau est une science ou un simple passe-temps et, si c'est une science, quels en sont les fondements. Il a publié plus de 170 articles.
10:00–10:30am: Break
10:30–12:00am: Student presentations
Rémy Raes: (Don’t you) Forget about me: on the importance of time in datasets
Thomas Collignon: Using Control Theory to Reduce Disk Congestion in Cloud Computing
Kouds Halitim: Efficient Task Hybridization in Heterogeneous Computing: A Practical Combination of Control and Scheduling
Anna Gallone: Control Theory Applied to Modular Systems : A Model-based Approach
Basile Lewandowski: Diffusion Models Quantization
Leonardo Roque Almeida Matos: AI for Semantic Communications in 6G
12:05–13:15pm: Lunch
13h30pm: Bus leaves the school towards Grenoble train station (ETA: 15h00)