Figure: A preliminary comparison of the measured transit depths for HD 209458b (left) and HAT-P-12b (right) using the Hubble Space Telescope (black data points and grey line, Sing+2016) and ETSI (red data points). The uncertainties in the black points represent the scatter in the HST spectrum at the given ETSI wavelength. The measurements are consistent within the uncertainties and an Anderson-Darling test returns a p-value >0.25 for both comparisons, indicating the measurements are unlikely to be statistically different from one another.
One of the most prolific methods of studying exoplanet atmospheres is transmission spectroscopy, which measures the difference between the depth of an exoplanet's transit signal at various wavelengths and attempts to correlate the depth changes to potential features in the exoplanet's atmosphere. Here we present reconnaissance observations of 21 exoplanet atmospheres measured with the Exoplanet Transmission Spectroscopy Imager (ETSI), a recently deployed spectrophotometer on the McDonald Observatory Otto Struve 2.1 m telescope. ETSI measurements are mostly free of systematics through the use of a novel observing technique called common-path multiband imaging (CMI), which has been shown to achieve photometric color precision on par with space-based observations (300 ppm or 0.03%). This work also describes the various statistical tests performed on the data to evaluate the efficacy of the CMI method and the ETSI instrument in combination. We find that none of the eight comparisons of exoplanet atmospheres measured with ETSI and other observatories (including the Hubble Space Telescope) provide evidence that the spectra are statistically dissimilar. These results suggest that ETSI can provide initial transmission spectroscopy observations for a fraction of the observational and monetary overhead previously required to detect an exoplanet's atmosphere. Ultimately these reconnaissance observations increase the number of planets with transmission spectroscopy measurements by ~10% and provide an immediate prioritization of 21 exoplanets for future follow-up with more precious observatories, such as the James Webb Space Telescope. The reconnaissance spectra are available through the Filtergraph visualization portal at the URL https://filtergraph.com/etsi/.
Oelkers, R. J., Schmidt. L., et al. 2025, AJ 169 134 doi:10.3847/1538-3881/ada557
Schmidt, L., Oelkers R. J., et al. 2024, JATIS, 10, 4, 045005 doi:10.1117/1.JATIS.10.4.045005
Konchady, T., Oelkers, R. J., Jones, D. O., et al. 2022, ApJS, 258, 24. doi:10.3847/1538-4365/ac41d3
Beaton, R. L., Oelkers, R. J., Hayes, C. R., et al. 2021, AJ, 162, 302. doi:10.3847/1538-3881/ac260c
Oelkers, R. J., 2021, NASA Technical Report. Novel Characterizations of the Theta & Xi Corona Borealid Meteor Showers
Oelkers, R. J., 2020, NASA Technical Report. The Biases Present in American Meteor Society Eyewitness Reports
Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138. doi:10.3847/1538-3881/ab3467
Oelkers, R. J. & Stassun, K. G. 2019, Research Notes of the American Astronomical Society, 3, 8. doi:10.3847/2515-5172/aafc34
Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018, AJ, 156, 183. doi:10.3847/1538-3881/aade86
Oelkers, R. J. & Stassun, K. G. 2018, AJ, 156, 132. doi:10.3847/1538-3881/aad68e
Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018, AJ, 156, 102. doi:10.3847/1538-3881/aad050
Ansdell, M., Oelkers, R. J., Rodriguez, J. E., et al. 2018, MNRAS, 473, 1231. doi:10.1093/mnras/stx2293
Oelkers, R. J., Rodriguez, J. E., Stassun, K. G., et al. 2018, AJ, 155, 39. doi:10.3847/1538-3881/aa9bf4
Oelkers, R. J., Stassun, K. G., & Dhital, S. 2017, AJ, 153, 259. doi:10.3847/1538-3881/aa6d55
Oelkers, R. J., Macri, L. M., Marshall, J. L., et al. 2016, AJ, 152, 75. doi:10.3847/0004-6256/152/3/75
Oelkers, R. J., Macri, L. M., Wang, L., et al. 2016, AJ, 151, 166. doi:10.3847/0004-6256/151/6/166
Wang, Z., Oelkers, R. J., Lee K.C. Lee, Fisher F.T., 2016, Mechanics of Materials, 101. doi:10.1016/j.mechmat.2016.07.005
Wang, Z., Oelkers, R. J., Lee K.C. Lee, Fisher F.T., 2016, Mechanics of Materials, 101. doi:10.1016/j.mechmat.2016.07.004
Oelkers, R. J., Macri, L. M., Wang, L., et al. 2015, AJ, 149, 50. doi:10.1088/0004-6256/149/2/5
Nardiello, D., Akana Murphy, J. M., Spinelli, R., et al., including Oelkers R. J., 2025, A&A, 693, A32. doi:10.1051/0004-6361/202452236
Alqasim, A., Grieves, N., Rosario, N. M., et al., including Oelkers R. J., 2024, MNRAS, 533, 1. doi:10.1093/mnras/stae1767
Rodriguez, J. E., Quinn, S. N., Vanderburg, A., et al., including Oelkers, R. J., 2023, MNRAS. doi:10.1093/mnras/stad595