Recent Publications
Published/Accepted:
Davari, S., D'Costa, N., Ramezan, R., and Mielke, J. G. (2023), Chronic Early-Life Social Isolation Enhances Spatial Memory in Male and Female Rats. Behavioural Brain Research, 447: 114433.
Kirby, M., Barbosa, J., Carlin, J., MacDonald, G., Leidelmeijer, J., Bonuso, N., Hanb, J., Nauman, B., Avila, J., Woodward, A., Obarr, S., Poulsen, C., Nichols, K., and Ramezan, R. (2023), Holocene hydroclimatic variability recorded in sediments from Maddox Lake (northern California Coast Range). Quaternary Research, 1-19. doi:10.1017/qua.2023.18 (in press).
Rai, K.E., Yin, H., Bengo, A.L.C., Cheeck, M., Courville, R., Bagheri, E., Ramezan, R., Behseta, S., and Shahrestani, P. (2023), Immune Defense in Drosophila Melanogaster Depends on Diet, Sex, and Mating Status. PLoS ONE, 18(4): e0268415.
Rahmatian, A., Yaghoobpoor, S., Tavasol, A., Aghazadeh-Habashi, K., Hasanabadi, Z., Bidares, M., Safari-Kish, B., Starke, R.M., Luther, E.M., Hajiesmaeili, M., Sodeifian, F., Fazel, T., Dehghani, M., Ramezan, R., Zangi, M., Deravi, N., Goharani, R., and Fathi, M. (2023), Clinical Efficacy of Endovascular Treatment Approach in Patients with Carotid Cavernous Fistula: A Systematic Review and Meta-Analysis. World Neurosurgery, 19: 100189.
Sakib, M.N., Best, J., Ramezan, R., Thompson, M.E., and Hall, P. (2023), Bidirectional Associations Between Adiposy and Cognitive Function: A Prospective Analysis of the Canadian Longitudinal Study on Aging (CLSA). The Journal of Gerontology: Medical Sciences, 78(2): 314-325.
Ramezan, R., Chen, M., Lysy, M., and Marriott, P. (2022), A Multivariate Point Process Model for Simultaneously Recorded Neural Spike Trains. Proceedings of 2022 Conference on Cognitive Computational Neuroscience, San Francisco, USA, August 25-28, 2022, 189-191.
Sakib, M.N., Ramezan, R., Thompson, M.E., Best, J., and Hall, P. (2022), Cognitive function is associated with multiple indices of adiposity in the Canadian Longitudinal Study on Aging (CLSA). Psychosomatic Medicine: Journal of Behavioural Medicine, 84(7): 773-784.
Shahrestani, P., King. E., Ramezan, R., et al. (2021), The Genetic Basis of Drosophila Melanogaster Defense Against Beauveria Bassiana Explored Through Experimental Evolution and Quantitative Trait Locus Mapping, G3: Genes, Genomes, Genetics, 11(12).
Leidelmeijer, J., Kirby, M.E., MacDonald, G., Carlin, J., Avila, J., Han, J., Nauman, B., Loyd, S., Nichols, K., and Ramezan, R. (2021), Younger Dryas to Early Holocene (12.9 and 8.1 ka cal yr BP) Limnological and Hydrological Change at Barley Lake, CA (Northern California Coast Range), Quaternary Research, 103: 193-207.
Kirby, M.E., Heusser, L., Scholz, C., Ramezan, R., Anderson, M.A., Markle, B., Rhodes, E., Fantozzi, J., Hiner, C., Price, B., Carrasco, J. (2018), A Late Wisconsin (32–10k cal a BP) History of Pluvials, Droughts and Vegetation in the Pacific South-West United States (Lake Elsinore, CA), Journal of Quaternary Science, 33(2): 238-254.
Nguyen, J., Thornburg, M., Khanbijian, S., Wood, R., Shahrestani, P., Ramezan, R. (2017), Evolved Immune Response of Drosophila Melanogaster to Entomopathogenic Fungus Beauveria, Dimensions, 19: 26-33.
Ramezan, R. (2017), Review of Basics of Matrix Algebra for Statistics with R by Nick Fieller, American Statistician, 71(1): 92-96.
Ramezan, R., Marriott, P., Chenouri, S. (2016), Skellam Process WithResetting: A Neural Spike Train Model, Statistics in Medicine, 35(30): 5717-5729.
Ramezan, R., Marriott, P., Chenouri, S. (2014), Multiscale Analysis of Neural Spike Trains, Statistics in Medicine, 33(2): 238-256.
Submitted:
Fast Approximate Inference for Spatial Extreme Value Models (with Chen., M. and Lysy, M.)
Publication with High Altmetric Scores (with Mona Ghannad, Patrick Bossuyt, Jeffrey Aronson, Elizabeth Wagner, Jon Brassey, and Carl Heneghan)
A systematic review and meta-analysis of hair cortisol in healthy adults: a standard reference value and methodological considerations using immunoassay methods (with Igboanugo, S., O'Connor, C., Zitoun, O. and Mielke, J.)
In preparation:
Multivariate Skellam Process: A Model for Simultaneously Recorded Neural Spike Trains
Time Scale and Neural Spike Trains: A Comprehensive Study (With Dwight Wynne)
Bayesian Skellam Process with Resetting
Assessing Temporal Uncertainties for Hydroclimatic Feature Comparison (with Kevin Nichols and Matt Kirby)