Text Box
(Extracted from-https://www.bbvaopenmind.com/en/ramanujan-the-man-who-saw-the-number-pi-in-dreams/?utm_source=facebook&utm_medium=techreview&utm_campaign=MITcompany&utm_content=Ramanujan)
On January 16, 1913, a letter revealed a genius of mathematics. The missive came from Madras, a city – now known as Chennai – located in the south of India. The sender was a young 26-year-old clerk at the customs port, with a salary of £20 a year, enclosing nine sheets of formulas, incomprehensible at first sight. “Dear Sir, I have no University education but I have undergone the ordinary school course. I have made special investigation of divergent series in general and the results I get are termed by the local mathematicians as startling,” began the writing signed by S. Ramanujan. A century later, the legacy of this Indian genius continues to influence mathematics, physics or computation.
The Indian mathematician Srinivasa Ramanujan. Credit: Wikimedia Commons
The renowned British mathematician G. H. Hardy was the stunned recipient of the document. It contained 120 formulas among which he identified one for knowing how many prime numbers there are between 1 and a certain number, and others that allowed one to calculate quickly the infinite decimals of the number pi. In some cases, Ramanujan had unwittingly arrived at conclusions already reached by western mathematicians, such as one of Bauer’s formulas for the decimals of pi, but many other formulas were entirely new. The formulas came alone, isolated, without formal demonstrations or statements. This lack of methodology almost led Hardy to throw the letter into the rubbish. However, in the end he concluded that: “They must be true because, if not, no one would have had the imagination to invent them.”
Ramanujan (centre) together with his colleague G.H. Hardy (extreme right) and other scientists at Trinity College at the University of Cambridge. Credit: Wikimedia Commons
This statement resulted in the journey of Srinivasa Ramanujan (1887-1920) to Cambridge, where Hardy invited him to move in order to try to unravel the secret of this self-taught genius. Ramanujan arrived at Trinity College that same spring of 1913 at a time when colonialism was still justified on the basis of inferior races, a conviction that the extraordinary capacity of the Indian showed to be nonsense. However, during his nearly six years in Britain, Ramanujan had to endure the racism and contempt of English society.
Ramanujan is the icon of mathematical intuition. His case is a spectacular example of how mathematical language is inscribed in the brains of all human beings. In the same way that Mozart visualized music, this young Indian had the ability to sprout mathematical formulas with which he tried to explain the world. Coming from a poor family, Ramanujan formulated his first theorems at age 13, and by the age of 23 he was already a recognized local figure in the Indian mathematical community, even though he had no college education. He had been rejected twice in the entrance exam for leaving unanswered all those questions that were not related to mathematics.
However, this event did not stop him from continuing his training, which from 1906 became strictly self-taught. In this period, Ramanujan had a great obsession that would follow him until the end of his days: the number pi. From his hand came hundreds of different ways of calculating approximate values of pi. In just the two notebooks he wrote before arriving at Cambridge are found 400 pages of formulas and theorems. Thanks to the theoretical foundations that Ramanujan laid a century ago, powerful computers have calculated the first 10 trillion decimals of the number pi. Going further is considered a test of fire in the world of computing.
Ramanujan’s method: intuitive and without formal demonstrations, clashed with the form of scientific work that demanded that the result be replicable, that is, that another mathematician could follow the approach. The mathematician used to claim that it was the protective goddess of his family, Namagiri, who showed him in dreams the equations of his formulas.
The Indian film stars Dev Patel as Srinivasa Ramanujan in ‘The Man who Knew Infinity’. Credit: The Man Who Knew Infinity
In spite of the peculiarities in his way of working, his results and the support that Hardy always gave him took him to the Royal Society and he became a member of the faculty of Trinity College. However, he was not able to enjoy much of these honours. Ramanujan, who had very fragile health throughout his life, contracted tuberculosis and was confined to a sanatorium in 1918. A year later he returned to his homeland, where he died in the following months aged only 32 years. This early death prevented him from completing the full proofs of his notes. His legacy, which has recently been portrayed by Hollywood in the film The Man Who Knew Infinity, goes beyond its exoticism and is a pillar of modern number theory.
By Beatriz Guillén for Ventana al Conocimiento
Famous scientists
https://www.famousscientists.org/c-v-raman/
Text Box
Oct 26, 2016 16:14 IST
General Knowledge Category:सामान्य ज्ञान तथ्य
प्रतिभाशाली लोगों के बिना इतिहास का निर्माण नहीं हो सकता है| न्यूटन, थॉमस अल्वा एडीसन, लियोनार्डो दा विंची, गैलीलियो गैलीली आदि जैसे लोग आज भी अपने सिद्धांतो, विचारों और फार्मूलों के कारण लोगों के दिलों-दिमाग में जीवित हैं। इसके अलावा कुछ ऐसे लोग भी हुए हैं जिन्होंने असाधारण बुद्धिमता और विलक्षण प्रतिभा के दम पर छोटी उम्र में ही प्रसिद्धि प्राप्त की है| जिन्हें हम पढ़ाकू या बुद्धिजीवी भी कह सकते हैं| यहाँ दुनिया के 10 सबसे अधिक बुद्धिमान लोगों के बारे में विवरण दे रहे हैं जिनका नाम इतिहास में अमर है|
1. आइजेक न्यूटन (Isaac Newton)
आइजेक न्यूटन एक प्रतिभाशाली भौतिक विज्ञानी, गणितज्ञ, खगोलशास्त्री और रसायनशास्त्री थे| उन्हें अब तक का सबसे प्रभावशाली और सबसे बड़ा वैज्ञानिक माना जाता है| उनके वैज्ञानिक क्रियाकलापों ने न केवल 17वीं सदी के वैज्ञानिक क्रांति में योगदान दिया बल्कि आधुनिक तकनीकों को भी जन्म दिया|
Source:www.farm5.static.flickr.com
प्रमुख कार्य:
- गुरूत्वाकर्षण एवं गति के नियमों की खोज |
- स्पेक्ट्रम एवं इन्द्रधनुष में दिखाई देने वाले रंगों के सिद्धांत का विकास|
- पहले व्यक्ति जिन्होंने बताया कि रंग प्रकाश का एक स्वाभाविक गुण है और जब श्वेत प्रकाश की किरण विक्षेपित या प्रतिबिंबित होती है तो यह 7 रंगों में बंट जाती है|
- पहले व्यावहारिक दूरबीन के निर्माणकर्ता |
- बिजली की अनुक्रम (series) का अध्ययन करने के लिए, गैर पूर्णांक घटकों के द्विपद प्रमेय के सामान्यीकरण के लिए और भिन्नों के मूलों का अनुमान लगाने के लिए तरीकों की खोज की|
- उनकी पुस्तक “द प्रिंसिपिया: मैथेमेटिकल प्रिंसिपल्स ऑफ नेचुरल फिलॉस्फी”, जो प्रिंसिपिया के नाम से प्रसिद्ध है, में आधुनिक भौतिकी के सिद्धांतों का वर्णन किया गया है|
2. आर्यभट्ट
वे एक प्रख्यात गणितज्ञ और खगोलशास्त्री थे| विज्ञान, गणित और खगोल विज्ञान के क्षेत्र में उनका योगदान अतुलनीय है।
Source:www.2.bp.blogspot.com
प्रमुख कार्य:
- शून्य की अवधारणा और 1018 तक बड़ी संख्या के प्रयोग की शुरुआत की|
- उन्होंने सर्वप्रथम दशमलव के बाद चार अंको तक “पाई” के मान की गणना की थी|
- त्रिभुज और वृत्त के क्षेत्रफल की गणना के लिए फार्मूले तैयार किये थे|
- उन्होंने पृथ्वी की परिधि की गणना की और बताया कि यह 62,832 मील है| इसके अलावा पृथ्वी के अक्ष एवं अक्षीय घूर्णन के बारे में सुझाव दिए थे|
- वे पहले खगोलशास्त्री थे जिन्होंने सौर दिनों की निरंतर गिनती के लिए फार्मूले तैयार किये थे|
- इसके अलावा उन्होंने बताया कि “ग्रहण” चंद्रमा और पृथ्वी की छाया के कारण होते हैं|
- उन्होंने यह भी बताया कि “ग्रह” सूर्य के प्रकाश के परावर्तन के कारण चमकते हैं|
- उन्होंने “पृथ्वी के चपटे होने की अवधारणा” की खोज की और बताया कि पृथ्वी और अन्य ग्रह सूर्य के चारों ओर परिक्रमा करते हैं|
- क्या आप जानते हैं कि उन्होंने 24 वर्ष की उम्र में “आर्यभट्टिय” नामक पुस्तक लिखी थी|
3. गैलिलियो गैलिली
वे एक प्रख्यात गणितज्ञ, खगोलशास्त्री और भौतिक विज्ञानी थे| इसके अलावा उन्हें “आधुनिक खगोल विज्ञान के जनक” के रूप में जाना जाता है|
Source: www.media.gettyimages.com
प्रमुख कार्य:
- वैज्ञानिक क्रांति स्थापित करने में उन्होंने महत्वपूर्ण भूमिका निभाई थी|
- खगोलीय वेधशाला और दूरबीन का आविष्कार में योगदान|
- खगोलीय खोज के रूप में उन्होंने शुक्र के विभिन्न चरणों की पुष्टि की, बृहस्पति के चार सबसे बड़े उपग्रहों की खोज की और सूर्य के धब्बों का अवलोकन एवं विश्लेषण किया था|
- उन्होंने सैन्य कम्पास का आविष्कार किया था|
4. थॉमस अल्वा एडीसन
वे एक प्रख्यात आविष्कारक और एक अग्रणी व्यापारी थे| अमेरिका की अर्थव्यवस्था के निर्माण में उनके खोजों की प्रमुख भूमिका थी| इसके अलावा अमेरिका की पहली तकनीकी क्रांति में उनकी अग्रणी भूमिका थी|
Source:www.google.co.in
प्रमुख कार्य:
- पहले आविष्कारक जिनकी अपनी प्रयोगशाला थी|
- उन्होंने पहले विद्युत् बल्ब का आविष्कार किया था| पहला विद्युत् बल्ब 40 घंटे तक और दूसरा विद्युत् बल्ब 225 घंटे तक चला था|
- क्या आप जानते हैं कि उन्होंने फिल्मी कैमरे की खोज की थी?
- उन्होंने प्रतिदीप्तिदर्शी (Fluoroscope) और पुनः चार्ज होने वाले बैटरी का आविष्कार किया था|
क्या आप “कृष्ण के बटरबॉल (Butterball)” के पीछे के रहस्य को जानते हैं?
5. लियोनार्दो दा विंची
वे एक वास्तुकार, गणितज्ञ, संगीतकार, मूर्तिकार, इंजीनियर, आविष्कारक, शरीर-रचना विज्ञानी और लेखक थे|
Source:www.i.dailymail.co.uk.com
प्रमुख कार्य:
- पहले व्यक्ति जिन्होंने मानव शरीर का चीड़-फाड़ किया था|
- उन्होंने टैंक, पैराशूट, हेलीकॉंप्टर जैसी वस्तुओं का आविष्कार कर हमारी मदद की है|
- वे एक प्रसिद्ध कलाकार, चित्रकार एवं संगीतकार थे| उनकी सबसे मशहूर पेंटिंग “मोनालिसा” है| उनकी विभिन्न पेंटिंग्स को संग्रहालय एवं आर्ट गैलरी में देखा जा सकता है|
- उनकी रूचि भूविज्ञान एवं विभिन्न स्थानों के नक्शे बनाने में भी थी|
- वे उल्टी दिशा (दायें से बायें) में भी धाराप्रवाह रूप से लिख सकते थे|
- उनमें पुनर्जागरण की भावना भरी हुई थी और उन्हें उनकी कल्पना शक्ति, आविष्कार और अत्यंत जिज्ञासा के लिए जाना जाता है|
6. स्टीफन हॉकिन्स
उनकी वर्तमान उम्र 74 वर्ष है| वे एक ब्रह्मांड विज्ञानी, लेखक, सैद्धांतिक भौतिक विज्ञानी और “सैद्धांतिक ब्रह्मांड विज्ञान रिसर्च सेंटर” के निदेशक हैं|
Source:www.img.artpal.com
प्रमुख कार्य:
- उन्होंने भविष्यवाणी की है कि ब्लैक होल से विकिरण निकलता है जिसे “हॉकिंग विकिरण (Hawking Radiation) कहा जाता है|
- उन्होंने सर्वप्रथम ब्रह्मांड विज्ञान से सिद्धांत का प्रतिपादन किया और क्वांटम यांत्रिकी का समर्थन किया था|
- उन्हें अमेरिका का सर्वोच्च नागरिक सम्मान “प्रेसिडेंसियल मेडल” से नवाजा जा चुका है|
- उन्होंने अपनी पुस्तक “अ ब्रीफ हिस्ट्री ऑफ टाइम” में अपने ही सिद्धांतों और ब्रह्माण्ड विज्ञान के बारे में सामान्य रूप से विचार-विमर्श किया है|
- उनकी अन्य पुस्तकों में “द यूनिवर्स इन ए नटशेल”, “द लार्ज स्केल स्ट्रक्चर ऑफ स्पेश-टाइम” एवं “द ग्रैंड डिजायन” प्रमुख हैं|
- 65 वर्ष की उम्र में वे अंतरिक्ष में गए थे और “कैनेडी अंतरिक्ष केन्द्र” फ्लोरिडा में उन्होंने गुरुत्वाकर्षण के बिना पर्यावरण का अनुभव किया था| लकवाग्रस्त होने के बावजूद उन्होंने अपनी सफलताओं से यह साबित कर दिया है कि यदि कोई व्यक्ति अपने जीवन में कुछ भी हासिल करना चाहता है तो उसे किसी भी प्रकार की शारीरिक विफलता रोक नहीं सकती है|
7. टेरेंस ताओ
आप विश्वास नहीं करेंगे कि जब टेरेंस ताओ 2 साल के थे तो वे 5 वर्ष के छात्रों को उच्चारण करना और संख्याओं को जोड़ने की विधा सिखाते थे| 10 साल की उम्र में उन्होंने अंतरराष्ट्रीय गणितीय ओलम्पियाड में भाग लेना शुरू किया और 1986 में कांस्य, 1987 में रजत और 1988 में स्वर्ण पदक जीता और गणितीय ओलंपियाड के इतिहास में सबसे कम उम्र के स्वर्ण पदक विजेता बने थे| 16 साल की उम्र में उन्होंने स्नातक की डिग्री और मास्टर की डिग्री प्राप्त की थी एवं 20 साल की उम्र में अपनी पीएचडी की डिग्री पूरी की थी| उनकी बुद्धिमता स्तर (IQ level) 230 है और वर्तमान में वे 41 वर्ष के हैं|
प्रमुख कार्य:
- पूर्णांकों के अंकगणितीय समान्तर श्रेणी (arithmetic progressions) के लिए उन्होंने “ग्रीन-ताओ” प्रमेय दिया था|
- तस्वीरों में लाल आँखों को हटाने के लिए उन्होंने “द पॉवर ऑफ कॉन्वेक्स रिलेक्सेशन: नियर ऑप्टीमल मैट्रिक्स कम्पलीशन” नामक सिद्धांत एवं अधूरी और गलत माप से बचने हेतु “स्टेबल सिग्नल रिकवरी” नामक सिद्धांत की खोज की थी|
- उनके द्वारा प्रतिपादित पहेलियों के साथ बहुतलीय ज्यामिति “लिटिलवुड-रिचर्डसन शंकु” के पहलुओं को निर्धारित करता है।
- उन्होंने “ऑपरेटर स्प्लिटिंग” के द्वारा KDV समीकरण का संख्यात्मक विश्लेषण किया था|
- उन्हें संयुक्त रूप से “फील्ड्स पदक (2006)”, “सस्त्रा रामानुजन पुरस्कार (2006)” और गणित का “ब्रेकथ्रू पुरस्कार (2014)” जैसे सम्मानों से नवाजा जा चुका है|
जानें ballpoint पेन का आविष्कार कब, क्यों और कैसे हुआ?
8. क्रिस्टोफर लेंगन
Source: www.74g2t4f911l3d46ma3e1dgr1.wpengine.netdna-cdn.com
उन्हें अमेरिका में सबसे चतुर व्यक्ति माना जाता है और उनका बुद्धिमता स्तर (IQ level) 195 से 210 के बीच है| आपको जानकर आश्चर्य होगा कि सैट की परीक्षा के दौरान सोने के बावजूद क्रिस्टोफर लेंगन ने परीक्षा में उत्तीर्ण हेतु आवश्यक अंक प्राप्त किये थे| वर्तमान में उनकी उम्र 64 वर्ष है|
प्रमुख कार्य:
- उन्होंने मन और वास्तविकता के बीच के संबंध को दर्शाने के लिए एक सिद्धांत की खोज की जिसे “कॉग्निटिव थियोरेटीक मॉडल ऑफ द यूनिवर्स” कहा जाता है|
- उन्होंने लोगों की मदद करने के लिए अपनी पत्नी “जीना लोसासो” के साथ मिलकर "मेगा फाउंडेशन" का गठन किया है|
- उन्होंने एनबीसी के “1 बनाम 100” प्रतियोगिता में 250,000 डॉलर का पुरस्कार जीता है|
- उन्होंने युवा पीढ़ी के सामने एक मिसाल प्रस्तुत की है कि वे भी बिना किसी डिग्री के स्वाध्याय के दम पर दृढ़ संकल्प और कड़ी मेहनत के द्वारा अपने लक्ष्य को प्राप्त कर सकते हैं|
9. किम उंग-यंग (Kim Ung-Yong)
क्या आप जानते हैं कि किम उंग-यंग का नाम “गिनीज बुक ऑफ वर्ल्ड रिकॉर्ड्स” में दर्ज है और उनका बुद्धिमता स्तर हॉकिंग एवं आइंस्टीन से भी अधिक है| जब वे चार महीने के थे तभी उन्होंने बोलना शुरू कर दिया था और 2 साल की उम्र में वे जापानी, कोरियाई, जर्मन और अंग्रेजी भाषा पढ़ना जानते थे|
प्रमुख कार्य:
- अतिथि छात्र के रूप में उन्होंने “हेनयंग विश्वविद्यालय” में भौतिक विज्ञान की पढ़ाई की थी और 8 साल की उम्र में उन्हें नासा ने संयुक्त राज्य अमेरिका में अध्ययन करने के लिए आमंत्रित किया था|
- उन्होंने कोरियाई एवं चीनी भाषा में कवितायें लिखी है|
- उन्होंने 20 से भी कम पृष्ठों वाली निबंध एवं कविताओं की 2 छोटी पुस्तकें लिखी है|
- उनकी वर्तमान उम्र 54 वर्ष है और वे सादा जीवन व्यतीत करने में विश्वास रखते हैं| 2014 में उन्हें “शिन्हन विश्वविद्यालय” का एसोसिएट प्रोफेसर और “नार्थ क्योंग-जी डेवलपमेंट सेंटर” का वाईस प्रेसिडेंट नियुक्त किया गया था|
10. जुडित पोल्गर (Judit Polgar)
Source:www.chessdailynews.com
वह हंगरी की रहने वाली शतरंज की एक ग्रैंडमास्टर है और उनकी उम्र 40 वर्ष है|
प्रमुख कार्य:
- साल 1999 में, 15 साल की उम्र में, उन्होंने बॉबी फिशर को हराकर सबसे कम उम्र में ग्रैंडमास्टर बनने का रिकॉर्ड बनाया था|
- साल 2002 में पुनः उन्होंने अपना नाम इतिहास में दर्ज करवाया जब उन्होंने विश्व के नंबर एक खिलाड़ी गैरी कास्प्रोव को हराया था| “फिडे” की शीर्ष 100 खिलाड़ियों (FIDE’s Top 100 list) की सूची में वे एकमात्र महिला खिलाड़ी हैं|
- वह अब तक की पहली और एकमात्र महिला खिलाड़ी है जिन्होंने 2700 से अधिक रेटिंग अंक प्राप्त किये हैं| उन्होंने साल 2005 में खिलाड़ियों की विश्व रैंकिंग में 8वां स्थान एवं 2735 रेटिंग अंक प्राप्त किये थे |
Text Box
General Knowledge Category:GK Facts
Without geniuses History can’t be created. Persons like Newton, Thomas Elwa Edison, Leonardo da Vinci, Galileo Galilei etc are still alive due to their methods, ideas and formulas. There are also people who have gained fame and achieved in small age with their mind-boggling IQ levels, exceptionally intelligent and talented including brilliantly accomplished academics, former child prodigies etc. We can also call them geeks, nerds or superb sharp intellectuals. Here are 10 most intelligent people on earth those who have created history.
He is an extraordinary genius physicist, mathematician, astronomer and alchemist. He is considered as the most influential and greatest scientist ever lived. His scientific work not only contributed to the 17th century scientific revolution but also gave birth to modern technologies.
Source:www.farm5.static.flickr.com
His Works:
- Concept of Universal gravitation and laws of motion.
- Developed the theory of colour which is visible in the spectrum and rainbow.
- First person to tell that colour is an intrinsic property of light and explained the phenomena that when white light is scattered, reflected or transmitted it breaks in to 7 colours.
- Build first practical telescope.
- Contributed to the study of power series, generalised the binomial theorem to non-integer components and developed the method for approximating the roots of a function.
- His book ‘Philosophaie, Natruals, Principia Mathematica’ popularly known as Principia deals with the principles of modern physics.
He was an acclaimed mathematician and astronomer. His contribution to science, maths and astronomy is tremendous.
Source:www.2.bp.blogspot.com
His work:
- Introduced concept of zero and how to use large numbers up to 1018.
- First time he had calculated the value of ‘pi’ accurately to the fourth decimal point.
- Devised the formula for calculating areas of triangles and circles.
- Calculated the circumference of the earth as 62,832 miles and also suggested about the axial rotation of the earth and its axis.
- First astronomer to devise a continuous counting of solar days.
- Also, told that eclipses occur due to the shadows of moon and earth.
- He also told that planets shine due to the reflection of sunlight.
- ‘Flat Earth concept’ was introduced by him and laid the foundation that earth and other planets orbit the sun.
- Amazing, do you know that at the age of 24 he wrote “Aryabhatiya”.
He was an illustrious mathematician, astronomer and Physicist. Also, known as the Father of Modern Astronomy.
Source: www.media.gettyimages.com
His works
- Played a key role in establishing scientific revolution.
- Contribution in astronomical observatory and invented telescope.
- In astronomical discovery he confirmed the phases of venus, discover four largest satellites of Jupiter and observation and analysis of sunspots.
- He invented military compass.
He was a prolific inventor and a leading businessman. In building America’s economy he was the mastermind behind discoveries and innovations and front-runner of America’s first technological revolution.
Source:www.google.co.in
His Works
- First inventor to have an invention laboratory.
- He invented the first electric bulb. The first one lasted 40 hours and second one lasted 225 hours.
- Do you know that he had invented movie camera.
- Invented Fluoroscope.
- Invented re-chargeable battery.
He was an architect, mathematician, musician, polymath, sculptor, engineer, inventor, anatomist and writer.
Source:www.i.dailymail.co.uk.com
His Works
- First person to dissect human body.
- He helped us to invent things like tank, parachute, helicopter etc.
- Famous artist, painter and musician. His one of the known paintings is of Mona Lisa and many are displayed in museums, art galleries etc.
- He was interested in geology and draws maps of various places.
- He can also write backward.
- He was a spirit of Renaissance and also known for imaginations, inventions and utmost curiosity.
15 amazing Science facts that will blow your mind!
He is at present 74, a cosmologist, author, theoretical physicist and Director of Research Centre for Theoretical Cosmology.
Source:www.img.artpal.com
His Works
- He predicted that Black holes emit radiation called Hawking Radiation.
- He is the first to make theory on Cosmology and supported quantum mechanics.
- He is recipient of Presidential Medal of Freedom, the highest civilian award in the US.
- His book ‘A Brief History of time’ in which he has discussed about his own theories and cosmology in general.
- Various other books are The Universe in a nutshell, The Large Scale Structure of Space-Time, The Grand Design etc.
- At the age of 65, he went to space and at Kennedy Space Centre in Florida he had experienced the environment without gravity and proved that if a person wants to achieve something in his life nothing can stop him or her. Being paralysed he had achieved and proved this.
Amazing you won’t believe is that when he was 2 years old he used to teach 5 years old students how to spell and how to add numbers. At the age of 10, he started participating in International Mathematical Olympiads and won bronze in 1986, silver in 1987 and gold in 1988 and became the youngest ever gold medallist in the Mathematical Olympiad. At 16, he had earned Bachelor’s degree and Master’s degree and completed his Ph.D at the age of 20 with an outstanding IQ of 230 and at present he is 41 years old.
His Works
- On arithmetic progressions of Integers he had given a Green-Tao theorem.
- To remove red eyes in photo he had given some theories like The power of Convex Relaxations: Near-Optimal Matrix Completion and Stable Signal Recovery from Incomplete and Inaccurate Measurements.
- Polyhedral geometry with Puzzles determines facets of the Littlewood-Rischardson cone.
- Numerical analysis with Operator Splitting for the KdV equation.
- He was a co-recipient of the Fields Medal (2006), SASTRA Ramanujan Prize (2006), Breakthrough Prize in Mathematics (2014) etc.
Source: www.74g2t4f911l3d46ma3e1dgr1.wpengine.netdna-cdn.com
He is known as the smartest man in America having an IQ of 195 and 210. In SAT exam he had scored what is needed but we can’t ignore is that he slept in an exam and then too he cleared it. At present he is 64 years old.
His Works
- He developed the theory of the relationship between mind and reality known as “Cognitive-Theoretic Model of the Universe”.
- He has formed “Mega Foundation” along with his wife Gina LoSasso in order to provide help to the people.
- He has won $250,000 in NBC’s 1 vs. 100 contest.
- He has set an example for young generation, who can achieve their goal with similar determination and hard work even after doing self studies without any degree
Do You know that who Invented Ball pen?
Do you know that he had booked a place for himself in The Guinness Book of World records and has more brain power than Hawking and Einstein. When he was four months young he started speaking and at the age of 2 he used to read Japanese, Korean, German and English.
His Works
- As a guest physics student at Hanyang University was taking courses and at the age of 8 he was invited by NASA to study in the United States.
- He had written poetry in Korean and Chinese languages.
- He had also written two short books of essays and poems of less than 20 pages.
- He believes in simple living, at present he is 54 years old and in 2014 he became an associate professor in Shinhan University and also Vice President of North Kyeong-gi Development Research Center.
Source:www.chessdailynews.com
She is 40 years old and a Hungarian chess grandmaster.
Her Works
- In 1999, at the age of 15, she had created a history by defeating Bobby Fischer and became the youngest Grandmaster.
- In 2002 again she had created history by beating world number 1 Garry Kasparov. In FIDE’s Top 100 list she is the only woman.
-
Text Box
[[[[[Copied From -Jagran.com]]]]
Why IndIGO was in News?
The term IndIGO or Indian Initiative in Gravitational-wave Observations was in news in the second week of February 2016 as international physicists announced detection of gravitational waves for the first time since their prediction by Albert Einstein in 1916.
The waves were detected using the facilities at the existing three LIGO detectors that are located in Livingston, Louisiana and Hanford, Washington of the USA.
What is IndIGO?
IndIGO is an initiative to set up advanced experimental facilities, with appropriate theoretical and computational support, for a multi-institutional Indian national project in gravitational-wave astronomy. It is also touted as one of the large scale scientific projects undertaken in independent India in collaboration with global partners.
What is LIGO-India?
LIGO-India is the prime project under the IndIGO initiative. The Laser Interferometer Gravitational-wave Observatory or LIGO project operates three gravitational-wave (GW) detectors. Two are at Hanford in the state of Washington, north-western USA, and one is at Livingston in Louisiana, south-eastern USA.
Currently these observatories are being upgraded to their advanced configurations (called Advanced LIGO). The proposed LIGO-India project aims to move one Advanced LIGO detector from Hanford to India.
LIGO-India project is envisaged as an international collaboration between the LIGO Laboratory and three lead institutions in the IndIGO consortium: Institute of Plasma Research (IPR) Gandhinagar, Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune and Raja Ramanna Centre for Advanced Technology (RRCAT), Indore.
LIGO lab would provide the complete design and all the key detector components. Indian scientists would provide the infrastructure to install the detector at a suitable site in India and would be responsible for commissioning it.
The proposed observatory would be operated jointly by IndIGO and the LIGO-Lab and would form a single network along with the LIGO detectors in USA and Virgo interferometer – an interferometer similar to LIGO, located close to Pisa, Italy.
How LIGO-India will be designed?
The proposed detector will be a Michelson Interferometer with Fabry-Perot enhanced arms of 4 km length and aims to detect differential changes in the arm-lengths as small as 10-23 Hz-1/2 in the frequency range between 30 to 800 Hz.
The design would be identical to that of the Advanced LIGO detectors that are being commissioned in the USA.
What are its scientific benefits?
• The scientific benefits of LIGO-India are enormous. Adding a new detector to the existing network will increase the expected event rates, and will boost the detection confidence of new sources by increasing the sensitivity, sky coverage and duty cycle of the network.
• But the dramatic improvement from LIGO-India would come in the ability of localizing GW sources in the sky. Sky-location of the GW sources is computed by combining data from geographically separated detectors ('aperture synthesis').
• Adding a new detector in India, geographically well separated from the existing LIGO-Virgo detector array, will dramatically improve the source-localization accuracies (5 to 10 times), thus enabling us to use GW observations as an excellent astronomical tool.
What will be its impact on Indian science, industry and education?
Impact on Indian science
• The proposed LIGO-India project will help Indian scientific community to be a major player in the emerging research frontier of GW astronomy.
• A major initiative like LIGO-India will further inspire frontier research and development projects in India. The nature of the experiment is intrinsically multidisciplinary.
• It will bring together scientists and engineers from different fields like optics, lasers, gravitational physics, astronomy and astrophysics, cosmology, computational science, mathematics and various branches of engineering.
• In order to fully realize the potential of multi-messenger astronomy, the LIGO-India project will join forces with several Indian astronomy projects. Potential collaborators include the Astrosat project, future upgrades of the India-based Neutrino Observatory and optical/radio telescopes.
Impact on industry
The high-end engineering requirements of the project (such as the world's largest ultra-high vacuum facility) will provide unprecedented opportunities for Indian industries in collaboration with academic research institutions.
LIGO project has facilitated major industry-academic research partnerships in USA and Europe, and has produced several important technological spin offs. LIGO-India will provide similar opportunities to Indian industry.
Education and public outreach
• A cutting edge project in India can serve as a local focus to interest and inspire students and young scientists.
• The LIGO-India project involves high technology instrumentation and its dramatic scale will spur interest and provide motivation to young students for choosing experimental physics and engineering physics as career options.
• The ‘multi-spectral’ reach to physics will attract a large number of talented and motivated young researchers and students to the program, as it has done in other countries.
• The observatory will also be one of the very few research facilities in India of this scale, international relevance and technological innovation to which the general public and students can have access.
What is the present status of IndIGO?
Since 2009, the IndIGO Consortium has been involved in constructing the Indian road-map for Gravitational Wave Astronomy and a phased strategy towards Indian participation in realizing the crucial gravitational-wave observatory in the Asia-Pacific region.
In October 2011, LIGO-India was included in the list of Mega Projects under consideration by the then Planning Commission.
What is Indian Neutrino Observatory?
Similar to IndIGO, Indian Neutrino Observatory (INO) Project is another mega-science project. It is a proposed underground observatory to detect ephemeral particles called neutrinos.
The Union Cabinet cleared the project in 2015 to set up the laboratory in Tamil Nadu. However, the project has been stalled for over a year due to protests by activist groups, concerned over its environmental impact.
Indian scientists associated with detection of gravitational waves
Indian scientists have, over 30 years, contributed substantially to the recent discovery of gravitational waves. Notable among them are C V Vishveshwara, Bala Iyer, Anand Sengupta and Sanjib Mitra.
C V Vishveshwara and Bala Iyer were among the first in the world to solve Einstein’s equations to derive a mathematical model to explain how colliding black holes would look and what tell-tale signals they emitted.
While Anand Sengupta developed methods to ensure that both the LIGO detectors — separated by 3,000 kilometres — have caught the same gravitational wave, Sanjib Mitra has found ways to tell apart gravitational waves from various exotic stars.
Text Box
[[A report by Ravi Pratap Singh- 20-7-2011]
LIBS and its application to tokamak fusion reactor
To meet the demand of mankind needs of energy, scientists & engineers from the entire world have come together in International Thermonuclear Experimental Reactor (ITER) project to utilize the fusion energy in order to produce electricity. In the present time total production of electricity per year in the whole world is approximately 20,000TWh [1]. It is forecasted that in 2020 the demand of electricity will be many times larger than the current production. This goal can’t be achieved if we stick only with thermal electric power, hydroelectric power and other traditional energy sources because of its own limitations, so only promise can be made on the basis of nuclear sources of energy. However fusion source is preferred over fission as energy produced in fusion process are (4-5) times higher in comparison to fission energy and it produce less radioactive waste than current fission reactors. Other one is that fusion reactor will use abundant sources of fuel (hydrogen isotopes).
But tokamak is facing several no. of challenges; treatment of Plasma facing Components (PFCs) is the major issue for ITER operation [2]. During plasma operation, plasma interacts with the surface of plasma facing components therefore erosion of the wall material and mixed re-deposition with plasma fuel takes place. Therefore a thick layer of hydrocarbon is deposited on PFCs. So it becomes very essential to remove these trapped fuels in order to fulfill safety requirements, recycling of trapped fuel and to control tritium inventory inside the vessel. To solve this problem several methods has been proposed for the treatment e.g. chemical process, oxidation, radiofrequency heating and laser ablation method. However in all these, laser ablation method is relatively useful technique for removal of co-deposited layer than others [3]. Advantage of this technique is that it can be handled remotely and do the job of removal of co-deposited layer without damaging the wall of the tokamak. Due to the difference in thermal properties of deposited layer and the bulk material, the threshold fluence of ablation is different for both bulk and the co-deposited layer. Fortunately it is found that threshold fluence of the bulk is greater than that of the co-deposited layer, so by keeping the fluence lower than the threshold we will be able to remove the co-deposited layer from the bulk without any loss of the bulk target [4, 5].
Nevertheless if we keep the fluence lower than the threshold it usually takes more time to clean whole PFCs. Despite anything to the contrary the efficiency of the laser ablation technique needs to be enhanced.
Therefore to speed up the ablation process we can opt for higher fluence, but here is the risk of wall damaging. So we must associate a proper diagnostic technique like LIBS (Laser induced breakdown spectroscopy) with ablation process. LIBS enable us to determine the composition of co-deposited layer and the bulk material. Thus it helps us to distinguish the co-deposited layer and bulk material during the ablation process according to which we can change ablation fluence in order to have both higher overall ablation efficiency and less risk of wall damaging. For safety reasons it is set that tritium should not be more than 700g in vessel[6] .Therefore it is very important to control and remove that excess tritium in vessel. Keeping this in mind efforts has been made to analyze the samples of the Tora Supra tile both qualitatively and quanitatively.People have done fast imaging of plasma plume and spectral imaging of hydrogen lines in argon environment at different pressures [7] .Fast imaging gives us idea about time evolution of intensity and size of the plasma plume .In the early stage plasma remains spherical in shape and most intense region is located on the edge. This is due to snowplough effect [8]. By optical emission spectroscopy we determine the time and space resolved evolution of plasma species .It is observed that H𝛼 line is strongly broadened at the beginning of expansion and narrows along with time this is due to the fact that stark broadening increases with electron density. The asymmetry of observed line gives information about contribution of hydrogen and deuterium. Thus LIBS is the appropriate technique to measure the trapped quantity of tritium in the vessel. But for quantitative analysis we need calibration samples with composition and concentration close to the material to be analyzed .In our case the physical properties of the deposited material is not known , therefore calibration will be difficult. So only possibility is to determine the composition of the material from calibration free analysis of optical spectrum of laser produced plasma of material [9]. For calibration free analysis laser plasma is assumed to be stoichiometry and optically thin. The calibration free elemental analysis also requires existence of local thermal equilibrium .By LTE we mean that the equilibrium occurs in small region of space although it may be different from region to region. In order to ensure the existence of LTE, lower limit of electron density is determined by McWhriter criteria. Due to presence of some metallic impurities and difficulty to excite and ionize the organic elements LIBS spectra are dominated by metallic spectral lines. Therefore we observe only few lines of carbon and hydrogen in the spectra. A McWhriter criterion for organic element is one order higher than metals. Since electron density is the function of laser fluence so by increasing the laser fluence we can reach to the point to satisfy the McWhriter criteria. So we must determine minimum limit of fluence for diagnostic purpose in order to satisfy this criteria. But higher fluence for a long time may damage the wall. Thus in order to develop an optimize LIBS technique for the treatment of PFCs we must consider all the facts discussed above.
In this way we come to the point that laser technique may play an important role in wall conditioning and treatment of PFCs.
References:
[1].en.wikipedia.org/wiki/World_energy_consumption
[2].www.iter.org/
[3]. F Le Guern et al. Journal of Nuclear Materials, 335 (2004) 410–416
[4] H.Roche et al ;J.Nucl.Mater.(2010), doi:10.1016/j.jnucmat.2010.08.033
[5]C. Grisolia et al./ Journal of Nuclear Materials, 363-365(2007), 1138-1147
[6].J. Rothe et al. /J. Nucl. Mater.390-391(2009)1-9.
[7]. L. Mercadier et al., J. Nucl. Mater. (2010), doi:10.1016/j.jnucmat.2010.10.079
[8]T.E.Itina, et.al; Phys.Rev.E66 066406(2002)
[9].Salvatore Almavia et al. journal of chem.phys; doi:10.1016/j.chem.phys.2011.07.012