1.
Numerical modelling of convection dominated transport coupled with density driven flow in porous media
Frolkovic P., De Schepper H.
(2000) Advances in Water Resources, 24 (1) , pp. 63-72.
Cited 83 times in Scopus by:
Simmons, C.T., Elder, J.W.
The Elder Problem
(2017) Groundwater, 55 (6), pp. 926-930.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030116074&doi=10.1111%2fgwat.12593&partnerID=40&md5=cc240bc646f4947c737b01258202619c
Si, L., Li, Z., Xue, D., Zhou, J., Yang, Y., Zhou, Y.
Modeling and Application of Gas Pressure Measurement in Water-Saturated Coal Seam Based on Methane Solubility
(2017) Transport in Porous Media, 119 (1), pp. 163-179.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020124163&doi=10.1007%2fs11242-017-0878-0&partnerID=40&md5=e79b9bc5f2ed5b9cf04b3b54f9971cb4
Zakerdoost, H., Ghassemi, H., Iranmanesh, M.
Solution of boundary value problems using dual reciprocity boundary element method
(2017) Advances in Applied Mathematics and Mechanics, 9 (3), pp. 680-697.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010006415&doi=10.4208%2faamm.2014.m783&partnerID=40&md5=3a2149bb37a3a702cc48be10ac951a85
Di Renzo, V., Wohletz, K., Civetta, L., Moretti, R., Orsi, G., Gasparini, P.
The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations
(2016) Journal of Volcanology and Geothermal Research, 328, pp. 210-221.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006284523&doi=10.1016%2fj.jvolgeores.2016.11.004&partnerID=40&md5=9a762bcb0e2a72e81bc78e6a00aa908c
Zhang, C., Zarrouk, S.J., Archer, R.
A mixed finite element solver for natural convection in porous media using automated solution techniques
(2016) Computers and Geosciences, 96, pp. 181-192.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989841661&doi=10.1016%2fj.cageo.2016.08.012&partnerID=40&md5=1e10011cca3e4930896d6f15110ff6f6
Bürger, R., Kumar, S., Sudarshan Kumar, K., Ruiz-Baier, R.
Discontinuous approximation of viscous two-phase flow in heterogeneous porous media
(2016) Journal of Computational Physics, 321, pp. 126-150.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84974603590&doi=10.1016%2fj.jcp.2016.05.043&partnerID=40&md5=b83f0857e94eab0f284b7b3bc7405086
Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C.T., Ackerer, P.
The Henry problem: New semianalytical solution for velocity-dependent dispersion
(2016) Water Resources Research, 52 (9), pp. 7382-7407.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990853793&doi=10.1002%2f2016WR019288&partnerID=40&md5=d3b68578cc0e916fe6911bdd15e4341a
Murgulet, D., Tick, G.R.
Effect of variable-density groundwater flow on nitrate flux to coastal waters
(2016) Hydrological Processes, 30 (2), pp. 302-319.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955187204&doi=10.1002%2fhyp.10580&partnerID=40&md5=f6b535f4b97b22032b3b1358d564167f
Guevara Morel, C.R., Van Reeuwijk, M., Graf, T.
Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations
(2015) Journal of Contaminant Hydrology, 183, pp. 82-98.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946145802&doi=10.1016%2fj.jconhyd.2015.10.004&partnerID=40&md5=6dcc95591f268a6453dd37723602792d
Liu, Y., Kuang, X., Jiao, J.J., Li, J.
Numerical study of variable-density flow and transport in unsaturated-saturated porous media
(2015) Journal of Contaminant Hydrology, 182, pp. 117-130.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941907181&doi=10.1016%2fj.jconhyd.2015.09.001&partnerID=40&md5=3d6294ff699f94e1a3803a9ebcc1ba91
Geng, X., Boufadel, M.C.
Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation
(2015) Journal of Hydrology, 524, pp. 427-438.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925012659&doi=10.1016%2fj.jhydrol.2015.02.046&partnerID=40&md5=c99017678e1e1bf2bec0af457a339ed9
etc.
2.
Flux-based method of characteristics for contaminant transport in flowing groundwater Frolkovic P. 2002, Computing and Visualization in Science, (2) 73-83 Cited 26 times in Scopus by: Hu, D., Zhu, Y., Zhong, D., Qin, H. Two-dimensional finite-volume Eulerian-Lagrangian method on unstructured grid for solving advective transport of passive scalars in free-surface flows (2017) Journal of Hydraulic Engineering, 143 (12), art. no. 04017051, . https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030759350&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001371&partnerID=40&md5=1c958c76e85147d0f7ab972ca4b6bade Bonaventura, L., Ferretti, R. Flux form Semi-Lagrangian methods for parabolic problems (2016) Communications in Applied and Industrial Mathematics, 7 (3), pp. 53-70. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990960806&doi=10.1515%2fcaim-2016-0022&partnerID=40&md5=511be0e6fe91a2b20e7e298f129ac04e Bonaventura, L., Ferretti, R. Semi-Lagrangian methods for parabolic problems in divergence form (2014) SIAM Journal on Scientific Computing, 36 (5), pp. A2458-A2477. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911363469&doi=10.1137%2f140969713&partnerID=40&md5=ac75c47caf3cd0bf42b7f6d0834f8367 Ullrich, P.A., Norman, M.R. The Flux-Form Semi-Lagrangian Spectral Element (FF-SLSE) method for tracer transport (2014) Quarterly Journal of the Royal Meteorological Society, 140 (680), pp. 1069-1085. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899492346&doi=10.1002%2fqj.2184&partnerID=40&md5=6a2ec79ffa05d4ae8ab70d9593c348fe Geiser, J., Buck, V., Arab, M. Model of PE-CVD apparatus: Verification and simulations (2010) Mathematical Problems in Engineering, 2010, art. no. 407561, . https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955299986&doi=10.1155%2f2010%2f407561&partnerID=40&md5=17c751ac1ea7a019d5963de26c02f0f6 Mikula, K., Ohlberger, M. A new level set method for motion in normal direction based on a semi-implicit forward-backward diffusion approach (2010) SIAM Journal on Scientific Computing, 32 (3), pp. 1527-1544. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953817593&doi=10.1137%2f09075946X&partnerID=40&md5=898c04df7fe5b40551d22329d3fcfb44 Mallet, V., Pourchet, A., Quélo, D., Sportisse, B. Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations (2007) Journal of Geophysical Research Atmospheres, 112 (15), art. no. D15301, . https://www.scopus.com/inward/record.uri?eid=2-s2.0-35148822199&doi=10.1029%2f2006JD008373&partnerID=40&md5=c217c05c9c101ad6dddbdf3f32aea0c6 Sinha, R.K., Geiser, J. Error estimates for finite volume element methods for convection-diffusion-reaction equations (2007) Applied Numerical Mathematics, 57 (1), pp. 59-72. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750514612&doi=10.1016%2fj.apnum.2005.12.002&partnerID=40&md5=61a3421c85ade2deffdf35283591eb34 Restelli, M., Bonaventura, L., Sacco, R. A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows (2006) Journal of Computational Physics, 216 (1), pp. 195-215. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748155796&doi=10.1016%2fj.jcp.2005.11.030&partnerID=40&md5=ce006a9d63233b9ee54d4fb8d28d2c56 Kacur, J., Van Keer, R. Solution of degenerate parabolic variational inequalities with convection (2003) Mathematical Modelling and Numerical Analysis, 37 (3), pp. 417-431. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038041046&doi=10.1051%2fm2an%3a2003035&partnerID=40&md5=25afdc3c51261e8eed870ea590a7789f
etc.
3.
The modelling of moisture absorption in epoxies: effects at the boundaries De Wilde W.P., Frolkovic P. 1994, Composites, (2) 119-127 Cited 23 times in Scopus by:
Soman, R., Malinowski, P., Ostachowicz, W. Comparative study of deterioration of composite due to moisture using strain, electro-mechanical impedence, and guided waves (2018) Proceedings of SPIE - The International Society for Optical Engineering, 10600, art. no. 106000I, . https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049319164&doi=10.1117%2f12.2295698&partnerID=40&md5=1cdb39edf25c0eb4252dadd298f062b9 Kamiya, T., Mizutani, T. Studies on hygroscopic behavior of composite materials for highly stable satellite structures (2017) Zairyo/Journal of the Society of Materials Science, Japan, 66 (4), pp. 275-281. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018948722&doi=10.2472%2fjsms.66.275&partnerID=40&md5=aa50cc8e859b367a8fa7f5f26dd3c7b2 Chilali, A., Assarar, M., Zouari, W., Kebir, H., Ayad, R. Effect of geometric dimensions and fibre orientation on 3D moisture diffusion in flax fibre reinforced thermoplastic and thermosetting composites (2017) Composites Part A: Applied Science and Manufacturing, 95, pp. 75-86. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010402382&doi=10.1016%2fj.compositesa.2016.12.020&partnerID=40&md5=94948819563ad4d64ff2307723d8d298 Silva, M.A.G., Cidade, M.T., Biscaia, H., Marreiros, R. Composites and FRP-strengthened beams subjected to dry/wet and salt fog cycles (2014) Journal of Materials in Civil Engineering, 26 (12), art. no. 04014092, . https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911394967&doi=10.1061%2f%28ASCE%29MT.1943-5533.0001008&partnerID=40&md5=91a9a6d934ab437750e1e396111deb7e Poveda, R.L., Dorogokupets, G., Gupta, N. Carbon nanofiber reinforced syntactic foams: Degradation mechanism for long term moisture exposure and residual compressive properties (2013) Polymer Degradation and Stability, 98 (10), pp. 2041-2053. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883824392&doi=10.1016%2fj.polymdegradstab.2013.07.007&partnerID=40&md5=2d9429343ec7d385c58eb670e29063ec Wang, Y.-G. Moisture absorption characteristics of 3D braided carbon fiber reinforced epoxy resin composites (2009) Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 42 (10), pp. 867-871. https://www.scopus.com/inward/record.uri?eid=2-s2.0-70849122209&partnerID=40&md5=5ea8fe22c788e9d7e4b9ea55ecd0aa90 Soutis, C. Modelling open hole compressive strength of composite laminates tested in hot wet conditions (2009) Plastics, Rubber and Composites, 38 (2-4), pp. 55-60. https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649201901&doi=10.1179%2f174328909X387810&partnerID=40&md5=9a2ae84318e1e1661fed53f5596ebe16 Botelho, E.C., Rezende, M.C., Mayer, S., Voorwald, H. Evaluation of fatigue behavior on repaired carbon fiber/epoxy composites (2008) Journal of Materials Science, 43 (9), pp. 3166-3172. https://www.scopus.com/inward/record.uri?eid=2-s2.0-41549118833&doi=10.1007%2fs10853-008-2535-z&partnerID=40&md5=c486fd4a8e173047c01468145e29e893 Botelho, E.C., Pardini, L.C., Rezende, M.C. Damping behavior of hygrothermally conditioned carbon fiber/epoxy laminates (2007) Journal of Applied Polymer Science, 106 (5), pp. 3143-3148. https://www.scopus.com/inward/record.uri?eid=2-s2.0-35948996969&doi=10.1002%2fapp.26834&partnerID=40&md5=15465d2b1bdfcc7ef37e62a5631daa7d Silva, M.A.G. Aging of GFRP laminates and confinement of concrete columns (2007) Composite Structures, 79 (1), pp. 97-106. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845220585&doi=10.1016%2fj.compstruct.2005.11.033&partnerID=40&md5=05a511dafc472bea45fd3f4de1f2458f Bond, D.A., Smith, P.A. Modeling the transport of low-molecular-weight penetrants within polymer matrix composites (2006) Applied Mechanics Reviews, 59 (1-6), pp. 249-267. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846343210&doi=10.1115%2f1.2202873&partnerID=40&md5=eb529092485d563f93d3f8a0bb331612 etc.
4.
Consistent velocity approximation for finite volume or element discretizations of density driven flow in porous media Knabner P., Frolkovic P. 1996, International Conference on Computational Methods in Water Resources, CMWR, 93-100 Cited 17 times in Scopus: Niemi, A., Yang, Z., Carrera, J., Power, H., McDermott, C.I., Rebscher, D., Lennard Wolf, J., May, F., Figueiredo, B., Vilarrasa, V. Mathematical modeling: Approaches for model solution (2017) Theory and Applications of Transport in Porous Media, 29, pp. 129-185. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014032322&doi=10.1007%2f978-94-024-0996-3_4&partnerID=40&md5=863c2e64a4241418588abe0874ef39d0 Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C.T., Ackerer, P. The Henry problem: New semianalytical solution for velocity-dependent dispersion (2016) Water Resources Research, 52 (9), pp. 7382-7407. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990853793&doi=10.1002%2f2016WR019288&partnerID=40&md5=d3b68578cc0e916fe6911bdd15e4341a Diersch, H.-J.G. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media (2014) FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, 9783642387395, pp. 1-996. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929898362&doi=10.1007%2f978-3-642-38739-5&partnerID=40&md5=56d5da174413fea5a274a69b81f34f08 Reiter, S., Logashenko, D., Stichel, S., Wittum, G., Grillo, A. Models and simulations of variable-density flow in fractured porous media (2014) International Journal of Computational Science and Engineering, 9 (5-6), pp. 416-432. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906873956&doi=10.1504%2fIJCSE.2014.064527&partnerID=40&md5=66a647ef5197d3eae295069173af3c08 Albets-Chico, X., Kassinos, S. A consistent velocity approximation for variable-density flow and transport in porous media (2013) Journal of Hydrology, 507, pp. 33-51. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887165248&doi=10.1016%2fj.jhydrol.2013.10.009&partnerID=40&md5=76bd2bfe67e429da8998e83248839687 Povich, T.J., Dawson, C.N., Farthing, M.W., Kees, C.E. Finite element methods for variable density flow and solute transport (2013) Computational Geosciences, 17 (3), pp. 529-549. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876999320&doi=10.1007%2fs10596-012-9330-2&partnerID=40&md5=3f7322026fb6d597036127bf40e2b6c2 Grillo, A., Lampe, M., Wittum, G. Modeling and simulation of temperature-density-driven flow and thermodiffusionin porous media (2011) Journal of Porous Media, 14 (8), pp. 671-690. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953782343&doi=10.1615%2fJPorMedia.v14.i8.20&partnerID=40&md5=41a313a14a8af3938049f0b2b5d37f63 Grillo, A., Logashenko, D., Stichel, S., Wittum, G. Simulation of density-driven flow in fractured porous media (2010) Advances in Water Resources, 33 (12), pp. 1494-1507. https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649634086&doi=10.1016%2fj.advwatres.2010.08.004&partnerID=40&md5=d5970904f3856e97706d06904908645e Hidalgo, J.J., Carrera, J. Effect of dispersion on the onset of convection during CO2 sequestration (2009) Journal of Fluid Mechanics, 640, pp. 441-452. https://www.scopus.com/inward/record.uri?eid=2-s2.0-76349126356&doi=10.1017%2fS0022112009991480&partnerID=40&md5=c34cc6b8c8adc5a8f4bbc6fbdf0b22ac Mazzia, A., Putti, M. Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media (2006) Journal of Computational and Applied Mathematics, 185 (2), pp. 347-359. https://www.scopus.com/inward/record.uri?eid=2-s2.0-25144487614&doi=10.1016%2fj.cam.2005.03.015&partnerID=40&md5=063fbac184322ee0553f99ef262ff92b Held, R., Attinger, S., Kinzelbach, W. Homogenization and effective parameters for the Henry problem in heterogeneous formations (2005) Water Resources Research, 41 (11), art. no. W11420, pp. 1-14. https://www.scopus.com/inward/record.uri?eid=2-s2.0-29944432981&doi=10.1029%2f2004WR003674&partnerID=40&md5=3a1507f78a96c253b2eca5a9b72cfd21 Diersch, H.-J.G., Kolditz, O. Variable-density flow and transport in porous media: Approaches and challenges (2002) Advances in Water Resources, 25 (8-12), pp. 899-944. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036704552&doi=10.1016%2fS0309-1708%2802%2900063-5&partnerID=40&md5=56fd9a3a9324e1863a4a41af791d748f Diersch, H.-J.G., Kolditz, O. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems (1998) Advances in Water Resources, 21 (5), pp. 401-425. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032053255&doi=10.1016%2fS0309-1708%2897%2900003-1&partnerID=40&md5=c7157a324c3b9c5f8148755f15839aec
etc.
5.
High-resolution flux-based level set method Frolkovic P., Mikula K. 2007, SIAM Journal on Scientific Computing, (2) 579-597 Is cited 11 times in Scopus by: Zhu, C.-X., Tao, M.-J., Zhao, N., Zhu, C.-L., Wang, Z.-Z. Study of droplet shadow zone of aircraft wing with diffusion effects (2019) 57 (8), pp. 1-10. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070415318&doi=10.2514%2f1.J058241&partnerID=40&md5=3bd7241ee2de7f030b990dfcf7ba682a Aizinger, V., Bungert, L., Fried, M. Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem (2018) 18 (6), pp. 193-202. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042190168&doi=10.1007%2fs00791-018-0291-4&partnerID=40&md5=cf0731918c320d7a286e919662bec20c Bungert, L., Aizinger, V., Fried, M. A Discontinuous Galerkin Method for the Subjective Surfaces Problem (2017) 58 (1), pp. 147-161. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007463535&doi=10.1007%2fs10851-016-0695-z&partnerID=40&md5=6f5c45600437a5efbd72f4cd44011539 Zhou, W., Ouyang, J., Wang, X., Su, J., Yang, B. Numerical simulation of viscoelastic fluid flows using a robust FVM framework on triangular grid (2016) 236, pp. 18-34. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983546294&doi=10.1016%2fj.jnnfm.2016.08.003&partnerID=40&md5=f2cafc3dc93d328c3f39dc6624762e6b Zhou, W., Ouyang, J., Zhang, L., Su, J., Wang, X., Yang, B. Development of new finite volume schemes on unstructured triangular grid for simulating the gas-liquid two-phase flow (2016) 81 (1), pp. 45-67. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944411752&doi=10.1002%2ffld.4174&partnerID=40&md5=0235290b1a2a0fd8bf5d4aabbf885516 Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G. UG 4: A novel flexible software system for simulating PDE based models on high performance computers (2013) 16 (4), pp. 165-179. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925507307&doi=10.1007%2fs00791-014-0232-9&partnerID=40&md5=95067a91fe6eebecf63b92c5f13ec88f Lentine, M., Cong, M., Patkar, S., Fedkiw, R. Simulating free surface flow with very large time steps (2012) pp. 107-116. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988930821&partnerID=40&md5=469a21bffc7635423ad701bdbdf9ca60 Phongthanapanich, S., Dechaumphai, P. An explicit finite volume element method for solving characteristic level set equation on triangular grids (2011) 27 (6), pp. 911-921. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855671189&doi=10.1007%2fs10409-011-0480-6&partnerID=40&md5=4eb26e5183f2b60cf268b4ce75a94349 Phongthanapanich, S., Dechaumphai, P. Explicit characteristic-based finite volume element method for level set equation (2011) 67 (7), pp. 899-913. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053463829&doi=10.1002%2ffld.2399&partnerID=40&md5=e1e6d6c26e2c9d3aece2edf161fd0082 Van Der Pijl, S.P., Segal, A., Vuik, C., Wesseling, P. Computing three-dimensional two-phase flows with a mass-conserving level set method (2008) 11 (4-6), pp. 221-235. https://www.scopus.com/inward/record.uri?eid=2-s2.0-47949131977&doi=10.1007%2fs00791-008-0106-0&partnerID=40&md5=6904651735155827ab7663d1d5292e7d Patzák, B., Bittnar, Z. Simulation of fresh concrete flow with level set method (2007) 16 p. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053431705&partnerID=40&md5=674b79b95e3646154b8f416d3c9bf3e1
6.
Flux-based level set method: A finite volume method for evolving interfaces Frolkovic P., Mikula K. 2007, Applied Numerical Mathematics, (4) 436-454 Is cited 10 times in Scopus by: Zhu, C.-X., Tao, M.-J., Zhao, N., Zhu, C.-L., Wang, Z.-Z. Study of droplet shadow zone of aircraft wing with diffusion effects (2019) AIAA Journal, 57 (8), pp. 1-10. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070415318&doi=10.2514%2f1.J058241&partnerID=40&md5=3bd7241ee2de7f030b990dfcf7ba682a Bungert, L., Aizinger, V., Fried, M. A Discontinuous Galerkin Method for the Subjective Surfaces Problem (2017) Journal of Mathematical Imaging and Vision, 58 (1), pp. 147-161. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007463535&doi=10.1007%2fs10851-016-0695-z&partnerID=40&md5=6f5c45600437a5efbd72f4cd44011539 Zhou, W., Ouyang, J., Wang, X., Su, J., Yang, B. Numerical simulation of viscoelastic fluid flows using a robust FVM framework on triangular grid (2016) Journal of Non-Newtonian Fluid Mechanics, 236, pp. 18-34. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983546294&doi=10.1016%2fj.jnnfm.2016.08.003&partnerID=40&md5=f2cafc3dc93d328c3f39dc6624762e6b Zhou, W., Ouyang, J., Zhang, L., Su, J., Wang, X., Yang, B. Development of new finite volume schemes on unstructured triangular grid for simulating the gas-liquid two-phase flow (2016) International Journal for Numerical Methods in Fluids, 81 (1), pp. 45-67. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944411752&doi=10.1002%2ffld.4174&partnerID=40&md5=0235290b1a2a0fd8bf5d4aabbf885516 Bernauer, M.K., Herzog, R. Implementation of an X-FEM solver for the classical two-phase stefan problem (2012) Journal of Scientific Computing, 52 (2), pp. 271-293. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865314381&doi=10.1007%2fs10915-011-9543-x&partnerID=40&md5=4ef127bcb47acd7a6ca854fb848b1200 Phongthanapanich, S., Dechaumphai, P. An explicit finite volume element method for solving characteristic level set equation on triangular grids (2011) Acta Mechanica Sinica/Lixue Xuebao, 27 (6), pp. 911-921. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855671189&doi=10.1007%2fs10409-011-0480-6&partnerID=40&md5=4eb26e5183f2b60cf268b4ce75a94349 Phongthanapanich, S., Dechaumphai, P. Explicit characteristic-based finite volume element method for level set equation (2011) International Journal for Numerical Methods in Fluids, 67 (7), pp. 899-913. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053463829&doi=10.1002%2ffld.2399&partnerID=40&md5=e1e6d6c26e2c9d3aece2edf161fd0082 Mandel, J., Beezley, J.D., Coen, J.L., Kim, M. Data Assimilation for Wildland Fires: Ensemble kalman filters in coupled atmosphere-surface models (2009) IEEE Control Systems, 29 (3), pp. 47-65. https://www.scopus.com/inward/record.uri?eid=2-s2.0-66849125835&doi=10.1109%2fMCS.2009.932224&partnerID=40&md5=5a89489e3949c78cd9fa6aa2d9a298d4 Aizinger, V., Bungert, L., Fried, M. Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem (2018) Computing and Visualization in Science, 18 (6), pp. 193-202. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042190168&doi=10.1007%2fs00791-018-0291-4&partnerID=40&md5=cf0731918c320d7a286e919662bec20c Morigi, S. Geometric surface evolution with tangential contribution (2010) Journal of Computational and Applied Mathematics, 233 (5), pp. 1277-1287. https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350706024&doi=10.1016%2fj.cam.2007.04.052&partnerID=40&md5=bcd313ee43135fe232c01ec9ac4bf50a
7.
Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow Frolkovic P. (1998) Acta Math. Univ. Comenianae, 67 (1) , pp. 137-157. Cited 15 times in Scopus: Svyatskiy, D., Lipnikov, K. Consistent nonlinear solver for solute transport in variably saturated porous media (2017) 200, pp. 427-435. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020375502&doi=10.1007%2f978-3-319-57394-6_45&partnerID=40&md5=01111837e373b9fda91cfdd61bb1d683 Reiter, S., Logashenko, D., Stichel, S., Wittum, G., Grillo, A. Models and simulations of variable-density flow in fractured porous media (2014) 9 (5-6), pp. 416-432. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906873956&doi=10.1504%2fIJCSE.2014.064527&partnerID=40&md5=66a647ef5197d3eae295069173af3c08 Reiter, S., Logashenko, D., Grillo, A., Wittum, G. Preparation of grids for simulations of groundwater flow in fractured porous media (2012) 15 (4), pp. 209-225. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893676417&doi=10.1007%2fs00791-013-0210-7&partnerID=40&md5=e188c5cf25fe6feda902e945bcb249f1 Grillo, A., Logashenko, D., Stichel, S., Wittum, G. Forchheimer's correction in modelling flow and transport in fractured porous media (2012) 15 (4), pp. 169-190. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893701833&doi=10.1007%2fs00791-013-0208-1&partnerID=40&md5=8006d12bfb948e8d619a1f3949e3ad9b Grillo, A., Lampe, M., Logashenko, D., Stichel, S., Wittum, G. Simulation of salinity- and thermohalinedriven flowin fractured porous media (2012) 15 (5), pp. 439-458. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860444839&doi=10.1615%2fJPorMedia.v15.i5.40&partnerID=40&md5=7043380bf62ce780a0b279d65ca9549d Musuuza, J.L., Radu, F.A., Attinger, S. The stability of density-driven flows in saturated heterogeneous porous media (2011) 34 (11), pp. 1464-1482. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053364870&doi=10.1016%2fj.advwatres.2011.07.005&partnerID=40&md5=1ceb6d6adf7e46d1b428b2efb931c91b Musuuza, J.L., Radu, F.A., Attinger, S. The effect of dispersion on the stability of density-driven flows in saturated homogeneous porous media (2011) 34 (3), pp. 417-432. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79451476068&doi=10.1016%2fj.advwatres.2010.11.008&partnerID=40&md5=24229b387e59a20a759887561fbeb061 Grillo, A., Logashenko, D., Stichel, S., Wittum, G. Simulation of density-driven flow in fractured porous media (2010) 33 (12), pp. 1494-1507. https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649634086&doi=10.1016%2fj.advwatres.2010.08.004&partnerID=40&md5=d5970904f3856e97706d06904908645e Musuuza, J.L., Attinger, S., Radu, F.A. An extended stability criterion for density-driven flows in homogeneous porous media (2009) 32 (6), pp. 796-808. https://www.scopus.com/inward/record.uri?eid=2-s2.0-67349181795&doi=10.1016%2fj.advwatres.2009.01.012&partnerID=40&md5=dad09b310ed61e0efb6905366a7a4db6 Logashenko, D., Fischer, T., Motz, S., Gilles, E.D., Wittum, G. Simulation of crystal growth and attrition in a stirred tank (2006) 9 (3), pp. 175-183. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750452733&doi=10.1007%2fs00791-006-0031-z&partnerID=40&md5=1ce7b4ee6486117d3024efa90df605b4 Afif, M., Amaziane, B. Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media (2002) 191 (46), pp. 5265-5286. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037045084&doi=10.1016%2fS0045-7825%2802%2900458-9&partnerID=40&md5=05a011cfefda52748e5a1fcbdf3738b2 Ohlberger, M., Rohde, C. Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems (2002) 22 (2), pp. 253-280. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036243751&doi=10.1093%2fimanum%2f22.2.253&partnerID=40&md5=4e3717827b9489e3c6633bda01c31722 Knabner, P., Tapp, Ch., Thiele, K. Adaptivity in the finite volume discretization of variable density in porous media (2001) 26 (4), pp. 319-324. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035083067&doi=10.1016%2fS1464-1909%2801%2900013-2&partnerID=40&md5=cd47b2e9dc22e277564e401abea16fc5 Ohlberger, M. A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations (2001) 35 (2), pp. 355-387. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035592173&doi=10.1051%2fm2an%3a2001119&partnerID=40&md5=65d1891d10183df5f968cf93e70bc067 Fuhrmann, J., Langmach, H. Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws (2001) 37 (1-2), pp. 201-230. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035312041&doi=10.1016%2fS0168-9274%2800%2900039-8&partnerID=40&md5=c3b425205dd814a50075688c1fb41990
8.
Peter Frolkovic: Consistent velocity approximation for density driven flow and transport, In: Advanced Computational Methods in Engineering, Part 2: Contributed papers; (R. Van Keer at al., eds.), Shaker Publishing, Maastricht, 1998, p. 603-611 Cited 19 times in Scopus:
Akbas, M., Linke, A., Rebholz, L.G., Schroeder, P.W. The analogue of grad–div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes (2018) Computer Methods in Applied Mechanics and Engineering, 341, pp. 917-938. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050871391&doi=10.1016%2fj.cma.2018.07.019&partnerID=40&md5=28a52b2911ea63acb1d15f4f1fde83f8 Ahmed, N., Linke, A., Merdon, C. Towards pressure-robust mixed methods for the incompressible navier-stokes equations (2018) Computational Methods in Applied Mathematics, 18 (3), pp. 353-372. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049669557&doi=10.1515%2fcmam-2017-0047&partnerID=40&md5=382bd13867b9e612b6ad1b2b6dced8ba Diersch, H.-J.G. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media (2014) FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, 9783642387395, pp. 1-996. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929898362&doi=10.1007%2f978-3-642-38739-5&partnerID=40&md5=56d5da174413fea5a274a69b81f34f08 Linke, A. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime (2014) Computer Methods in Applied Mechanics and Engineering, 268, pp. 782-800. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888831480&doi=10.1016%2fj.cma.2013.10.011&partnerID=40&md5=86e8a25951a5aa3638652aed0f84c53f Reiter, S., Logashenko, D., Stichel, S., Wittum, G., Grillo, A. Models and simulations of variable-density flow in fractured porous media (2014) International Journal of Computational Science and Engineering, 9 (5-6), pp. 416-432. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906873956&doi=10.1504%2fIJCSE.2014.064527&partnerID=40&md5=66a647ef5197d3eae295069173af3c08 Povich, T.J., Dawson, C.N., Farthing, M.W., Kees, C.E. Finite element methods for variable density flow and solute transport (2013) Computational Geosciences, 17 (3), pp. 529-549. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876999320&doi=10.1007%2fs10596-012-9330-2&partnerID=40&md5=3f7322026fb6d597036127bf40e2b6c2 Reiter, S., Logashenko, D., Grillo, A., Wittum, G. Preparation of grids for simulations of groundwater flow in fractured porous media (2012) Computing and Visualization in Science, 15 (4), pp. 209-225. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893676417&doi=10.1007%2fs00791-013-0210-7&partnerID=40&md5=e188c5cf25fe6feda902e945bcb249f1 Grillo, A., Logashenko, D., Stichel, S., Wittum, G. Forchheimer's correction in modelling flow and transport in fractured porous media (2012) Computing and Visualization in Science, 15 (4), pp. 169-190. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893701833&doi=10.1007%2fs00791-013-0208-1&partnerID=40&md5=8006d12bfb948e8d619a1f3949e3ad9b Grillo, A., Logashenko, D., Stichel, S., Wittum, G. Simulation of density-driven flow in fractured porous media (2010) Advances in Water Resources, 33 (12), pp. 1494-1507. https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649634086&doi=10.1016%2fj.advwatres.2010.08.004&partnerID=40&md5=d5970904f3856e97706d06904908645e Nick, H.M., Schotting, R., Gutierrez-Neri, M., Johannsen, K. Modeling transverse dispersion and variable density flow in porous media (2009) Transport in Porous Media, 78 (1), pp. 11-35. https://www.scopus.com/inward/record.uri?eid=2-s2.0-64749088886&doi=10.1007%2fs11242-008-9277-x&partnerID=40&md5=55221127183f60d19f10e38f6ae2f42b Park, C.-H., Aral, M.M. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations (2007) Journal of Contaminant Hydrology, 92 (1-2), pp. 33-49. https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248353122&doi=10.1016%2fj.jconhyd.2006.11.008&partnerID=40&md5=3b088d9ed47a4ae3bea992d10ebad1d2 Mazzia, A., Putti, M. Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media (2006) Journal of Computational and Applied Mathematics, 185 (2), pp. 347-359. https://www.scopus.com/inward/record.uri?eid=2-s2.0-25144487614&doi=10.1016%2fj.cam.2005.03.015&partnerID=40&md5=063fbac184322ee0553f99ef262ff92b Zimmermann, S., Bauer, P., Held, R., Kinzelbach, W., Walther, J.H. Salt transport on islands in the Okavango Delta: Numerical investigations (2006) Advances in Water Resources, 29 (1), pp. 11-29. https://www.scopus.com/inward/record.uri?eid=2-s2.0-28444441600&doi=10.1016%2fj.advwatres.2005.04.013&partnerID=40&md5=81d1d8c9c1bc4440da7f123f56cb35fb Held, R., Attinger, S., Kinzelbach, W. Homogenization and effective parameters for the Henry problem in heterogeneous formations (2005) Water Resources Research, 41 (11), art. no. W11420, pp. 1-14. https://www.scopus.com/inward/record.uri?eid=2-s2.0-29944432981&doi=10.1029%2f2004WR003674&partnerID=40&md5=3a1507f78a96c253b2eca5a9b72cfd21 Johannsen, K. On the validity of the Boussinesq approximation for the Elder problem (2003) Computational Geosciences, 7 (3), pp. 169-182. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0142153109&doi=10.1023%2fA%3a1025515229807&partnerID=40&md5=307eb089145ff7a381c3a7e4ed4d6f65 Johannsen, K. The elder problem-Bifurcations and steady state solutions (2002) Developments in Water Science, 47 (C), pp. 485-492. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956705375&doi=10.1016%2fS0167-5648%2802%2980099-5&partnerID=40&md5=54502978e24fdd1826780e3040dee39c Diersch, H.-J.G. High-density flow and transport in porous media (2002) Developments in Water Science, 47 (C), pp. 477-484. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956704765&doi=10.1016%2fS0167-5648%2802%2980098-3&partnerID=40&md5=56f67548a850512e46893a0063ad5350 Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G. The saltpool benchmark problem - Numerical simulation of saltwater upconing in a porous medium (2002) Advances in Water Resources, 25 (3), pp. 335-348. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036504138&doi=10.1016%2fS0309-1708%2801%2900059-8&partnerID=40&md5=923b6c5f9164d5241f57faa07337b4c0 Diersch, H.-J.G., Kolditz, O. Variable-density flow and transport in porous media: Approaches and challenges (2002) Advances in Water Resources, 25 (8-12), pp. 899-944. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036704552&doi=10.1016%2fS0309-1708%2802%2900063-5&partnerID=40&md5=56fd9a3a9324e1863a4a41af791d748f
9.
Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D
Frolkovic P., Kacur J.
(2006) Computational Geosciences, 10 (3) , pp. 279-290.
Cited 8 times in Scopus and 2 times outside:
Yu, C., Wang, H., Fang, D., Ma, J., Cai, X., Yu, X.
Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method
(2018) Journal of Hydrology, 565, pp. 422-428.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052314484&doi=10.1016%2fj.jhydrol.2018.08.041&partnerID=40&md5=6b8e1e4afcfda6d9e377e580949898c2
Gassmann, M., Stamm, C., Olsson, O., Lange, J., Kümmerer, K., Weiler, M.
Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment
(2013) Hydrology and Earth System Sciences, 17 (12), pp. 5213-5228.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891364163&doi=10.5194%2fhess-17-5213-2013&partnerID=40&md5=25d673cedf67ef0a46219c178a1dbb38
Geiser, J., Arab, M.
Simulation of deposition processes with PECVD apparatus: Theory and applications
(2012) Simulation of Deposition Processes with PECVD Apparatus: Theory and Applications, pp. 1-144.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891975748&partnerID=40&md5=55c18c34175b984e30c61d36f9af474e
Geiser, J., Arab, M.
Simulation of a chemical vapor deposition: Mobile and immobile zones and homogeneous layers
(2010) Special Topics and Reviews in Porous Media, 1 (2), pp. 123-143.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955038411&doi=10.1615%2fSpecialTopicsRevPorousMedia.v1.i2.40&partnerID=40&md5=7c0da068b69a221d5913c47e73f67034
Amir, L., Kern, M.
A global method for coupling transport with chemistry in heterogeneous porous media
(2010) Computational Geosciences, 14 (3), pp. 465-481.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953873401&doi=10.1007%2fs10596-009-9162-x&partnerID=40&md5=35f2d4caf3aeac7e25de8ea778e76c14
Duru, O.O., Horne, R.N.
Modeling reservoir temperature transients and reservoir-parameter estimation constrained to the model
(2010) SPE Reservoir Evaluation and Engineering, 13 (6), pp. 873-883.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952375528&doi=10.2118%2f115791-PA&partnerID=40&md5=c1098f3696b73f9a6c7057dc2330d07b
Remešíková, M.
Solution of convection-diffusion problems with nonequilibrium adsorption
(2004) Journal of Computational and Applied Mathematics, 169 (1), pp. 101-116.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-3042599304&doi=10.1016%2fj.cam.2003.11.005&partnerID=40&md5=6fd3114c699de77121bed6f79b86f22c
Malengier, B., Van Keer, R.
Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation
(2008) Journal of Computational and Applied Mathematics, 215 (2), pp. 477-483.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-40849142592&doi=10.1016%2fj.cam.2006.03.050&partnerID=40&md5=9087b353ac5284dd306248d9eb5d13e2
Not in Scopus directly:
Trojakova, E., Babusikova, J.
Contaminant transport in partially saturated porous media
(2012) Numerical Analysis of Heat and Mass Transfer in Porous Media, 27, pp. 297-316. Cited 2 times.
J. M. P. Q. Delgado, A. G. Barbosa de Lima, and M. Vázquez da Silva, eds., Springer, New York
Hokr, M., Maryška, J., Severýn, O.
Application of numerical model on extraction of underground contamination: identification of dual-porosity properties
(2004) In: Proceedings of the 13th international soil conservation organization conference.
10.
Adaptive finite volume discretization of density driven flows in porous media
Frolkovic P., Knabner P., Tapp C., Thiele K.
(1997) Transport de Contaminants en Milieux Poreux (Support de Cours), INRIA, , pp. 322-355.
Cited 7 times in Scopus and 3 times others:
Brenner, K., Hilhorst, D., Vu-Do, H.-C. The Generalized Finite Volume SUSHI Scheme for the Discretization of Richards Equation (2016) Vietnam Journal of Mathematics, 44 (3), pp. 557-586. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983638473&doi=10.1007%2fs10013-015-0170-y&partnerID=40&md5=b9e801c99b76b60a578bfb82e5842890 Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C.T., Ackerer, P. The Henry problem: New semianalytical solution for velocity-dependent dispersion (2016) Water Resources Research, 52 (9), pp. 7382-7407. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990853793&doi=10.1002%2f2016WR019288&partnerID=40&md5=d3b68578cc0e916fe6911bdd15e4341a Schneider, A., Kröhn, K.-P., Püschel, A. Developing a modelling tool for density-driven flow in complex hydrogeological structures (2012) Computing and Visualization in Science, 15 (4), pp. 163-168. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880082120&doi=10.1007%2fs00791-013-0207-2&partnerID=40&md5=d0d80626865f025953487cbfe008237e Lang, S., Wittum, G. Large-scale density-driven flow simulations using parallel unstructured Grid adaptation and local multigrid methods (2005) Concurrency Computation Practice and Experience, 17 (11), pp. 1415-1440. https://www.scopus.com/inward/record.uri?eid=2-s2.0-25144514972&doi=10.1002%2fcpe.900&partnerID=40&md5=5e4c9177ac55910ec93669df814a0b93 Eymard, R., Gallouët, T., Herbin, R., Gutnic, M., Hilhorst, D. Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies (2001) Mathematical Models and Methods in Applied Sciences, 11 (9), pp. 1505-1528. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035730553&doi=10.1142%2fS0218202501001446&partnerID=40&md5=f5bd0d69e245e75c4380ef798a6d0f72 Fuhrmann, J., Langmach, H. Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws (2001) Applied Numerical Mathematics, 37 (1-2), pp. 201-230. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035312041&doi=10.1016%2fS0168-9274%2800%2900039-8&partnerID=40&md5=c3b425205dd814a50075688c1fb41990 Eymard, R., Gutnic, M., Hilhorst, D. The finite volume method for Richards equation (1999) Computational Geosciences, 3 (3-4), pp. 259-294. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033513105&partnerID=40&md5=d3466e55c4bf520768778158beac5c7a
Eymard, R., Gutnic, M., Hilhorst, D.
The finite volume method for an elliptic-parabolic equation
(1998) Acta Math. Univ. Comen., 67 (1), pp. 181-195
Lang, S.
Parallel-adaptive simulation with the multigrid-based software framework UG
(2006) Eng. Comp., 22 (3), pp. 157-179.
Stichel, Sabine (Sep 2014).
Flow in fissured porous media.
(2014) INIS 41 (21), pp.
http://inis.iaea.org/search/search.aspx?orig_q=RN:47066645
11.
Application of level set method for groundwater flow with moving boundary
Frolkovic P.
2012, Advances in Water Resources, 56-66
Cited 9 times in Scopus by: